C. E. Aitken and J. R. Lorsch, A mechanistic overview of translation initiation in eukaryotes, Nat. Struct. Mol. Biol, vol.19, pp.568-576, 2012.

Y. Ramon, S. Cajal, J. Castellvi, S. H-¨-ummer, V. Peg et al., Beyond molecular tumor heterogeneity: protein synthesis takes control, Oncogene, vol.37, pp.2490-2501, 2018.

J. Marcotrigiano, A. C. Gingras, N. Sonenberg, and S. K. Burley, Cocrystal structure of the messenger RNA 5 cap-binding protein (eIF4E) bound to 7-methyl-GDP, Cell, vol.89, pp.951-961, 1997.

K. Tomoo, X. Shen, K. Okabe, Y. Nozoe, S. Fukuhara et al., Crystal structures of 7-methylguanosine 5 -triphosphate (m(7)GTP)-and P(1)-7-methylguanosine-P(3)-adenosine-5 ,5 -triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region, Biochem. J, vol.362, pp.539-544, 2002.

W. Liu, R. Zhao, C. Mcfarland, J. Kieft, A. Niedzwiecka et al., Structural insights into parasite eIF4E binding specificity for m 7 G and m 2,2,7 G mRNA caps, J. Biol. Chem, vol.284, pp.31336-31349, 2009.

W. Liu, M. Jankowska-anyszka, K. Piecyk, L. Dickson, A. Wallace et al., Structural basis for nematode eIF4E binding an m(2,2,7)G-Cap and its implications for translation initiation, Nucleic Acids Res, vol.39, pp.8820-8832, 2011.

J. Marcotrigiano, A. C. Gingras, N. Sonenberg, and S. K. Burley, Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G, Mol. Cell, vol.3, pp.707-716, 1999.

J. D. Gross, N. J. Moerke, T. Haar, A. A. Lugovskoy, A. B. Sachs et al., Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E, Cell, vol.115, pp.739-750, 2003.

Y. Umenaga, K. S. Paku, Y. In, T. Ishida, and K. Tomoo, Identification and function of the second eIF4E-binding region in N-terminal domain of eIF4G: comparison with eIF4E-binding protein, Biochem. Biophys. Res. Commun, vol.414, pp.462-467, 2011.

S. Grünergr¨grüner, D. Peter, R. Weber, L. Wohlbold, M. Y. Chung et al., The structures of eIF4E-eIF4G complexes reveal an extended interface to regulate translation initiation, Mol. Cell, vol.64, pp.467-479, 2016.

S. Grünergr¨grüner, R. Weber, D. Peter, M. Y. Chung, C. Igreja et al., Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast, Nucleic Acids Res, vol.46, pp.6893-6908, 2018.

B. Joshi, A. Cameron, and R. Jagus, Characterization of mammalian eIF4E-family members, Eur. J. Biochem, vol.271, pp.2189-2203, 2004.

B. Joshi, K. Lee, D. L. Maeder, and R. Jagus, Phylogenetic analysis of eIF4E-family members, BMC Evol. Biol, vol.5, p.48, 2005.

P. Rosettani, S. Knapp, M. Vismara, L. Rusconi, and A. D. Cameron, Structures of the human eIF4E homologous protein, h4EHP, in its m 7 GTP-bound and unliganded forms, J. Mol. Biol, vol.368, pp.691-705, 2007.

M. J. Osborne, L. Volpon, J. A. Kornblatt, B. Culjkovic-kraljacic, A. Baguet et al., 2013) eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.3877-3882

R. E. Rhoads, eIF4E: new family members, new binding partners, new roles, J. Biol. Chem, vol.284, pp.16711-16715, 2009.

G. Hernández, C. G. Proud, T. Preiss, and A. Parsyan, On the Diversification of the Translation Apparatus across Eukaryotes, Comp. Funct. Genomics, p.256848, 2012.

J. D. Bangs, P. F. Crain, T. Hashizume, J. A. Mccloskey, and J. C. Boothroyd, Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides, J. Biol. Chem, vol.267, pp.9805-9815, 1992.

A. Zinoviev and M. Shapira, Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids, Comp. Funct. Genomics, p.813718, 2012.

E. R. Freire, N. R. Sturm, D. A. Campbell, . De-melo, and O. P. Neto, The role of cytoplasmic mRNA cap-binding protein complexes in Trypanosoma brucei and other trypanosomatids, Pathogens, vol.6, p.55, 2017.

R. Jagus, T. R. Bachvaroff, B. Joshi, and A. R. Place, Diversity of eukaryotic translational initiation factor eIF4E in protists, Comp. Funct. Genomics, p.134839, 2012.

B. P. Bannerman, S. Kramer, R. G. Dorrell, and M. Carrington, Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism, PLoS One, vol.13, p.192633, 2018.

R. Dhalia, C. R. Reis, E. R. Freire, P. O. Rocha, R. Katz et al., Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues, Mol. Biochem. Parasitol, vol.140, pp.23-41, 2005.

E. R. Freire, R. Dhalia, D. M. Moura, T. D. Da-costa-lima, R. P. Lima et al., The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties, Mol. Biochem. Parasitol, vol.176, pp.25-36, 2011.

E. R. Freire, A. A. Vashisht, A. M. Malvezzi, J. Zuberek, G. Langousis et al., ) eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei, RNA, vol.20, pp.1272-1286, 2014.

E. R. Freire, A. M. Malvezzi, A. A. Vashisht, J. Zuberek, E. A. Saada et al., Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog, Eukaryot. Cell, vol.13, pp.896-908, 2014.

Y. Yoffe, J. Zuberek, A. Lerer, M. Lewdorowicz, J. Stepinski et al., Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania, Eukaryot. Cell, vol.5, pp.1969-1979, 2006.

S. Meleppattu, H. Arthanari, A. Zinoviev, A. Boeszoermenyi, G. Wagner et al., Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major, Nucleic Acids Res, vol.46, pp.3791-3801, 2018.

I. Yamamoto, T. Kimura, Y. Tateoka, K. Watanabe, and I. K. Ho, N-substituted oxopyrimidines and nucleosides: structure-activity relationship for hypnotic activity as central nervous system depressant, J. Med. Chem, vol.30, pp.2227-2231, 1987.

M. Lewdorowicz, Y. Yoffe, J. Zuberek, J. Jemielity, J. Stepinski et al., Chemical synthesis and binding activity of the trypanosomatid cap-4 structure, RNA, vol.10, pp.1469-1478, 2004.

G. D. Van-duyne, R. F. Standaert, P. A. Karplus, S. L. Schreiber, and J. Clardy, Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin, J. Mol. Biol, vol.229, pp.105-124, 1993.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

G. M. Sheldrick, Experimental phasing with SHELXC/D/E: combining chain tracing with density modification, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.479-485, 2010.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

K. Cowtan, Recent developments in classical density modification, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.470-478, 2010.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

K. Cowtan, The Buccaneer software for automated model building. 1. Tracing protein chains, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1002-1011, 2006.

A. Vagin and A. Teplyakov, Molecular replacement with MOLREP, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.22-25, 2010.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller et al., , 2017.

O. S. Smart, T. O. Womack, A. Sharff, C. Flensburg, P. Keller et al., , 2011.

V. B. Chen, W. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

S. Kim, M. Matsumoto, and K. Chiba, Liquid-phase RNA synthesis by using alkyl-chain-soluble support, Chem. Eur. J, vol.19, pp.8615-8620, 2013.

M. Kadokura, T. Wada, C. Urashima, and M. Sekine, Efficient synthesis of -methyl-capped guanosine 5 -triphosphate as a 5 -terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCl 2 as a catalyst in DMF under anhydrous conditions, Tetrahedron Lett, vol.38, pp.8359-8362, 1997.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

F. Muttach, N. Muthmann, and A. Rentmeister, Synthetic mRNA capping, Beilstein J. Org. Chem, vol.13, pp.2819-2832, 2013.

D. Lama, M. R. Pradhan, C. J. Brown, R. S. Eapen, T. L. Joseph et al., Water-bridge mediates recognition of mRNA cap in eIF4E, Structure, vol.25, pp.188-194, 2017.

A. Haghighat and N. Sonenberg, eIF4G dramatically enhances the binding of eIF4E to the mRNA 5 -cap structure, J. Biol. Chem, vol.272, pp.21677-21680, 1997.

C. C. Wei, M. L. Balasta, J. Ren, and D. J. Goss, Wheat germ poly(A)binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues, Biochemistry, vol.37, pp.1910-1916, 1998.