J. J. Qin, R. Q. Li, and J. Raes, A human gut microbial gene catalogue established by
URL : https://hal.archives-ouvertes.fr/cea-00908974

K. Takeda, B. E. Clausen, and T. Kaisho, Enhanced Th1 activity and development of chronic 1 enterocolitis in mice devoid of Stat3 in macrophages and neutrophils, Immunity, vol.10, p.49, 1999.

M. Vinolo, G. J. Ferguson, and S. Kulkarni, SCFAs Induce Mouse Neutrophil 4 Chemotaxis through the GPR43 Receptor, PloS one, vol.6, 2011.

M. A. Vinolo, E. Hatanaka, and R. H. Lambertucci, Effects of short chain fatty acids on 6 effector mechanisms of neutrophils, Cell Biochem Funct, vol.27, pp.48-55, 2009.

S. W. Mills, S. H. Montgomery, and D. W. Morck, Evaluation of the effects of short-chain fatty 8 acids and extracellular pH on bovine neutrophil function in vitro, Am J Vet Res, vol.67, p.1907, 2006.

C. Eftimiadi, M. Tonetti, and A. Cavallero, Short-chain fatty acids produced by anaerobic 11 bacteria inhibit phagocytosis by human lung phagocytes, J Infect Dis, vol.161, pp.138-142, 1990.

P. Mirmonsef, M. R. Zariffard, and D. Gilbert, Short-chain fatty acids induce pro-13 inflammatory cytokine production alone and in combination with toll-like receptor ligands. Am 14, J Reprod Immunol, vol.67, pp.391-400, 2012.

Q. Liu, T. Shimoyama, and K. Suzuki, Effect of sodium butyrate on reactive oxygen species 16 generation by human neutrophils, Scand J Gastroenterol, vol.36, pp.744-750, 2001.

M. Aoyama, J. Kotani, and M. Usami, Butyrate and propionate induced activated or non-18 activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-19

, GPR-43 pathways, Nutrition, vol.26, pp.653-661, 2010.

G. Kostylina, D. Simon, and M. F. Fey, Neutrophil apoptosis mediated by nicotinic acid 21 receptors (GPR109A), Cell Death Differ, vol.15, pp.134-142, 2008.

H. Zhang, M. Du, and Q. Yang, Butyrate suppresses murine mast cell proliferation and 23 cytokine production through inhibiting histone deacetylase, J Nutr Biochem, vol.27, pp.299-306, 2016.

D. Kyner, P. Zabos, and J. Christman, Effect of sodium butyrate on lymphocyte activation

, J Exp Med, vol.144, pp.1674-1678, 1976.

A. S. Dagtas, R. E. Edens, and K. M. Gilbert, Histone deacetylase inhibitor uses p21(Cip1) to 27 maintain anergy in CD4+ T cells, Int Immunopharmacol, vol.9, pp.1289-1297, 2009.

K. H. Stenzel, R. Schwartz, and A. L. Rubin, Chemical Inducers of Differentiation in Friend-29

, Leukemia Cells Inhibit Lymphocyte Mitogenesis, Nature, vol.285, pp.106-108, 1980.

K. M. Gilbert and W. O. Weigle, Th1 cell anergy and blockade in G1a phase of the cell cycle, J 31 Immunol, vol.151, pp.1245-1254, 1993.

J. M. Moreira, P. Scheipers, and P. Sorensen, The histone deacetylase inhibitor Trichostatin A 33 modulates CD4+ T cell responses, Bmc Cancer, vol.3, p.30, 2003.

T. Kurita-ochiai, T. Hashizume, and H. Yonezawa, Characterization of the effects of 35 butyric acid on cell proliferation, cell cycle distribution and apoptosis, FEMS Immunol Med, p.36

. Microbiol, , vol.47, pp.67-74, 2006.

G. A. Bohmig, P. M. Krieger, and M. D. Saemann, n-butyrate downregulates the stimulatory 38 function of peripheral blood-derived antigen-presenting cells: a potential mechanism for 39 modulating T-cell responses by short-chain fatty acids, Immunology, vol.92, pp.234-243, 1997.

R. D. Michalek, V. A. Gerriets, and S. R. Jacobs, Cutting Edge: Distinct Glycolytic and Lipid 41

, Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4(+) T Cell 42 Subsets, Journal of Immunology, vol.186, pp.3299-3303, 2011.

K. Fischer, P. Hoffmann, and S. Voelkl, Inhibitory effect of tumor cell-derived lactic acid 44 on human T cells, Blood, vol.109, pp.3812-3819, 2007.

V. Bueno, I. Binet, and U. Steger, The specific monocarboxylate transporter (MCT1) 46 inhibitor, AR-C117977, a novel immunosuppressant

, Transplantation, vol.84, pp.1204-1207, 2007.

T. Kurita-ochiai, K. Ochiai, and K. Fukushima, Butyric acid-induced T-cell apoptosis is 1 mediated by caspase-8 and-9 activation in a Fas-independent manner, Clin Diagn Lab Immun, vol.2, pp.325-332, 2001.

E. Bailon, M. Cueto-sola, and P. Utrilla, Butyrate in vitro immune-modulatory effects 4 might be mediated through a proliferation-related induction of apoptosis, Immunobiology, vol.5, pp.863-873, 2010.

Y. Furusawa, Y. Obata, and S. Fukuda, Commensal microbe-derived butyrate induces the 7 differentiation of colonic regulatory T cells, Nature, vol.504, p.446, 2013.

L. Klampfer, J. Huang, and T. Sasazuki, Inhibition of interferon gamma signaling by the 9 short chain fatty acid butyrate, Mol Cancer Res, vol.1, pp.855-862, 2003.

M. Stempelj, M. Kedinger, and L. Augenlicht, Essential role of the JAK/STAT1 signaling 11 pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its 12 regulation by butyrate, J Biol Chem, vol.282, pp.9797-9804, 2007.

M. S. Boosalis, R. Bandyopadhyay, and E. H. Bresnick, Short-chain fatty acid derivatives 14 stimulate cell proliferation and induce STAT-5 activation, Blood, vol.97, pp.3259-3267, 2001.

S. K. Jackson, A. Deloose, and K. M. Gilbert, Induction of anergy in Th1 cells associated with 16 increased levels of cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1), Journal of 17 Immunology, vol.166, pp.952-958, 2001.

S. K. Jackson, A. Deloose, and K. M. Gilbert, The ability of antigen, but not interleukin-2, to 19 promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and 20 altered association patterns of cyclin-dependent kinase inhibitors, Immunology, vol.106, p.495, 2002.

M. Zhang, Q. Zhou, and R. G. Dorfman, Butyrate inhibits interleukin-17 and generates Tregs 23 to ameliorate colorectal colitis in rats, BMC Gastroenterol, vol.16, p.84, 2016.

A. Schmidt, M. Eriksson, and M. M. Shang, Comparative Analysis of Protocols to Induce 25 Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, 26 Rapamycin and Butyrate, PloS one, vol.11, p.148474, 2016.

P. Mamontov, E. Neiman, and T. Cao, Effects of short chain fatty acids and GPR43 28 stimulation on human Treg function, The Journal of Immunology, vol.194, pp.58-72, 2015.

M. Asarat, V. Apostolopoulos, and T. Vasiljevic, Short-Chain Fatty Acids Regulate 30 Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells in vitro

, Immunol Invest, vol.2016, pp.1-18

B. H. Yang, S. Hagemann, and P. Mamareli, Foxp3(+) T cells expressing RORgammat 33 represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during 34 intestinal inflammation, Mucosal immunology, vol.9, pp.444-457, 2016.

A. Chaudhry, D. Rudra, and P. Treuting, CD4+ regulatory T cells control TH17 responses 36 in a Stat3-dependent manner, Science, vol.326, pp.986-991, 2009.

A. Marson, K. Kretschmer, and G. M. Frampton, Foxp3 occupancy and regulation of key 38 target genes during T-cell stimulation, Nature, vol.445, pp.931-935, 2007.

L. Q. Wang, R. Tao, and W. W. Hancock, Using histone deacetylase inhibitors to enhance

, Foxp3(+) regulatory T-cell function and induce allograft tolerance, Immunol Cell Biol, vol.41, pp.195-202, 2009.

U. H. Beier, L. Q. Wang, and W. W. Hancock, Combination of isoform-selective histone/protein 43 deacetylase inhibitors improves Foxp3+T-regulatory cell function, Cell Cycle, vol.11, p.3352, 2012.

L. A. Kalekar, S. E. Schmiel, and S. L. Nandiwada, CD4 T cell anergy prevents autoimmunity 46 and generates regulatory T cell precursors, Nat Immunol, 2016.
DOI : 10.1038/ni.3331

URL : http://europepmc.org/articles/pmc4755884?pdf=render

L. Z. Shi, R. Wang, and G. Huang, HIF1alpha-dependent glycolytic pathway orchestrates a 48 metabolic checkpoint for the differentiation of TH17 and Treg cells, J Exp Med, vol.49, pp.1367-1376, 2011.

P. Shen, T. Roch, and V. Lampropoulou, IL-35-producing B cells are critical regulators of 1 immunity during autoimmune and infectious diseases, Journal of leukocyte biology, vol.507, pp.461-469, 2014.

Y. H. Shi, L. Z. Xu, and K. S. Peng, Specific immunotherapy in combination with Clostridium 5 butyricum inhibits allergic inflammation in the mouse intestine, Sci Rep, vol.5, 2015.

H. Y. Liao, L. Tao, and J. Zhao, Clostridium butyricum in combination with specific 7 immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients, Sci 8 Rep, vol.6, p.20481, 2016.

V. J. Sindhava and S. Bondada, Multiple regulatory mechanisms control B-1 B cell activation
DOI : 10.3389/fimmu.2012.00372

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2012.00372/pdf

, Front Immunol, vol.3, p.372, 2012.

M. J. Barnes and F. Powrie, Regulatory T cells reinforce intestinal homeostasis, Immunity, vol.12, pp.401-411, 2009.
DOI : 10.1016/j.immuni.2009.08.011

URL : https://doi.org/10.1016/j.immuni.2009.08.011

Z. Y. Zhang, Z. Zhang, and H. J. Schluesener, MS-275, an histone deacetylase inhibitor, reduces 14 the inflammatory reaction in rat experimental autoimmune neuritis, Neuroscience, vol.15, pp.370-377, 2010.

M. R. Fernando, A. Saxena, and J. L. Reyes, Butyrate enhances antibacterial effects while 17 suppressing other features of alternative activation in IL-4-induced macrophages, Am J Physiol 18 Gastrointest Liver Physiol, 2016.

J. Ji, D. Shu, and M. Zheng, Microbial metabolite butyrate facilitates M2 macrophage 20 polarization and function, Sci Rep, vol.6, p.24838, 2016.
DOI : 10.1038/srep24838

URL : https://www.nature.com/articles/srep24838.pdf

M. M. Tiemessen, A. L. Jagger, and H. G. Evans, CD4(+)CD25(+)Foxp3(+) regulatory T cells 22 induce alternative activation of human monocytes/macrophages, P Natl Acad Sci, vol.23, pp.19446-19451, 2007.

S. Han, J. Lu, and Y. Zhang, HDAC inhibitors TSA and sodium butyrate enhanced the 25 human IL-5 expression by altering histone acetylation status at its promoter region, Immunol 26 Lett, vol.108, pp.143-150, 2007.

V. K. Raker, M. P. Domogalla, and K. Steinbrink, Tolerogenic Dendritic Cells for Regulatory T 28, Cell Induction in Man. Front Immunol, vol.6, 2015.

G. Goverse, R. Molenaar, and L. Macia, Diet-Derived Short Chain Fatty Acids Stimulate 30 Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells, Immunology, vol.198, pp.2172-2181, 2017.

R. Schilderink, C. Verseijden, and J. Seppen, The SCFA butyrate stimulates the epithelial 33 production of retinoic acid via inhibition of epithelial HDAC, Am J Physiol Gastrointest Liver, vol.34

V. S. Cortez, L. Cervantes-barragan, and M. L. Robinette, Transforming Growth Factor-beta, vol.36

, Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands, Immunity, vol.37, p.38, 2016.

C. Viant, L. C. Rankin, and M. J. Girard-madoux, Transforming growth factor-beta and 39 Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate 40 lymphoid cells, Sci Signal, vol.9, p.46, 2016.

Y. S. Jang, S. H. Kim, and H. Y. Lee, Metabolites from commensal microbes are closely associated 42 with maintaining mucosal homeostasis through modulation of innate lymphoid cells in Peyer's 43 patch, Journal of Immunology, vol.192, pp.133-125, 2014.

E. A. Wohlfert, J. R. Grainger, and N. Bouladoux, GATA3 controls Foxp3(+) regulatory T 45 cell fate during inflammation in mice, J Clin Invest, vol.121, pp.4503-4515, 2011.

P. Y. Mantel, H. Kuipers, and O. Boyman, GATA3-driven Th2 responses inhibit TGF-beta1-47 induced FOXP3 expression and the formation of regulatory T cells, Plos Biol, vol.5, p.329, 2007.

H. Sokol, B. Pigneur, and L. Watterlot, Faecalibacterium prausnitzii is an anti-1 inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease 2 patients, P Natl Acad Sci USA, vol.105, pp.16731-16736, 2008.

D. Cruz, P. Prideaux, L. Wagner, and J. , Characterization of the gastrointestinal microbiota 4 in health and inflammatory bowel disease, Inflamm Bowel Dis, vol.18, pp.372-390, 2012.

P. Lepage, R. Hasler, and M. E. Spehlmann, Twin Study Indicates Loss of Interaction 6 Between Microbiota and Mucosa of Patients With Ulcerative Colitis, Gastroenterology, vol.7, pp.227-236, 2011.

N. Kamada, S. U. Seo, and G. Y. Chen, Role of the gut microbiota in immunity and 9 inflammatory disease, Nat Rev Immunol, vol.13, pp.321-335, 2013.

J. C. Clemente, L. K. Ursell, and L. W. Parfrey, The Impact of the Gut Microbiota on Human 11 Health: An Integrative View, Cell, vol.148, pp.1258-1270, 2012.

P. L. Lakatos, Recent trends in the epidemiology of inflammatory bowel diseases: up or 13 down?, World J Gastroenterol, vol.12, pp.6102-6108, 2006.

C. Abraham and J. H. Cho, Mechanisms of Disease Inflammatory Bowel Disease, New Engl J 15 Med, vol.361, pp.2066-2078, 2009.

J. H. Cho, The genetics and immunopathogenesis of inflammatory bowel disease, Nat Rev 17 Immunol, vol.8, pp.458-466, 2008.

C. Fiocchi, Inflammatory bowel disease: etiology and pathogenesis, Gastroenterology, vol.19, pp.182-205, 1998.
DOI : 10.1111/jgh.12751

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jgh.12751

S. Fujino, A. Andoh, and S. Bamba, Increased expression of interleukin 17 in inflammatory 21 bowel disease, Gut, vol.52, pp.65-70, 2003.

C. E. Egan, K. J. Maurer, and S. B. Cohen, Synergy between intraepithelial lymphocytes and 23 lamina propria T cells drives intestinal inflammation during infection, Mucosal immunology, vol.24, pp.658-670, 2011.
DOI : 10.1038/mi.2011.31

URL : https://www.nature.com/articles/mi201131.pdf

S. Laffont, K. Siddiqui, and F. Powrie, Intestinal inflammation abrogates the tolerogenic 26 properties of MLN CD103(+) dendritic cells, Eur J Immunol, vol.40, pp.1877-1883, 2010.

M. Rimoldi, M. Chieppa, and P. Larghi, Monocyte-derived dendritic cells activated by 28 bacteria or by bacteria-stimulated epithelial cells are functionally different, Blood, vol.29, pp.2818-2826, 2005.

B. A. Sayed and M. A. Brown, Mast cells as modulators of T-cell responses, Immunol Rev, vol.31, pp.53-64, 2007.

N. Powell, A. W. Walker, and E. Stolarczyk, The Transcription Factor T-bet Regulates 33 Intestinal Inflammation Mediated by Interleukin-7 Receptor(+) Innate Lymphoid Cells

, Immunity, vol.37, pp.674-684, 2012.

J. Ermann, T. Staton, and J. N. Glickman, Nod/Ripk2 signaling in dendritic cells activates 36 IL-17A-secreting innate lymphoid cells and drives colitis in T-bet

, P Natl Acad Sci USA, vol.111, pp.2559-2566, 2014.

S. Buonocore, P. P. Ahern, and H. H. Uhlig, Innate lymphoid cells drive interleukin-23-39 dependent innate intestinal pathology, Nature, vol.464, pp.1371-1375, 2010.

J. H. Bernink, C. P. Peters, and M. Munneke, Human type 1 innate lymphoid cells accumulate 41 in inflamed mucosal tissues, Nat Immunol, vol.14, pp.221-229, 2013.

A. Geremia, C. V. Arancibia-carcamo, and M. Fleming, IL-23-responsive innate 43 lymphoid cells are increased in inflammatory bowel disease, J Exp Med, vol.208, pp.1127-1133, 2011.

V. L. Burgio, S. Fais, and M. Boirivant, Peripheral monocyte and naive T-cell recruitment 45 and activation in Crohn's disease, Gastroenterology, vol.109, pp.1029-1038, 1995.

M. Y. Choy, J. A. Walker-smith, and C. B. Williams, Differential expression of CD25 47 (interleukin-2 receptor) on lamina propria T cells and macrophages in the intestinal lesions in 48 Crohn's disease and ulcerative colitis, Gut, vol.31, pp.1365-1370, 1990.

B. A. Volk, M. Niessner, and B. Amann, Expression of gamma delta T lymphocytes derived 1 from human intestinal biopsies, Immunol Res, vol.10, pp.310-312, 1991.

K. Fukushima, T. Masuda, and H. Ohtani, Immunohistochemical characterization, 3 distribution, and ultrastructure of lymphocytes bearing T-cell receptor gamma/delta in 4 inflammatory bowel disease, Gastroenterology, vol.101, pp.670-678, 1991.

L. D. Mcvay, D. Bachwich, and G. Lichtenstein, Changes in human mucosal gamma delta 6 T cell repertoire and function are associated with the disease process in inflammatory bowel 7 disease, Gastroenterology, vol.112, pp.1038-1038, 1997.

M. Nishimura, Y. Kuboi, and K. Muramoto, Chemokines as Novel Therapeutic Targets for 9 Inflammatory Bowel Disease, Ann Ny Acad Sci, vol.1173, pp.350-356, 2009.

K. A. Papadakis, J. Prehn, and S. T. Moreno, CCR9-positive lymphocytes and thymus-11 expressed chemokine distinguish small bowel from colonic Crohn's disease, Gastroenterology, vol.12, pp.246-254, 2001.

D. M. Fonseca, T. W. Hand, and S. J. Han, Microbiota-Dependent Sequelae of Acute Infection 14 Compromise Tissue-Specific Immunity, Cell, vol.163, pp.354-366, 2015.

T. W. Hand, D. Santos, L. M. Bouladoux, and N. , Acute Gastrointestinal Infection Induces 16 Long-Lived Microbiota-Specific T Cell Responses, Science, vol.337, pp.1553-1556, 2012.

K. Kamdar, S. Khakpour, and J. Chen, Genetic and Metabolic Signals during Acute Enteric 18 Bacterial Infection Alter the Microbiota and Drive Progression to Chronic Inflammatory 19 Disease, Cell Host Microbe, vol.19, pp.21-31, 2016.

D. N. Frank, C. E. Robertson, and C. M. Hamm, Disease Phenotype and Genotype Are 21 Associated with Shifts in Intestinal-associated Microbiota in Inflammatory Bowel Diseases

, Inflamm Bowel Dis, vol.17, pp.179-184, 2011.

D. N. Frank, A. Amand, and R. A. Feldman, Molecular-phylogenetic characterization of 24 microbial community imbalances in human inflammatory bowel diseases. P Natl Acad Sci 25 USA, vol.104, pp.13780-13785, 2007.

S. J. Ott, M. Musfeldt, and D. F. Wenderoth, Reduction in diversity of the colonic mucosa 27 associated bacterial microflora in patients with active inflammatory bowel disease, Gut, vol.28, pp.685-693, 2004.

X. C. Morgan, T. L. Tickle, and H. Sokol, Dysfunction of the intestinal microbiome in 30 inflammatory bowel disease and treatment, Genome Biol, vol.13, 2012.

M. Pozuelo, S. Panda, and A. Santiago, Reduction of butyrate-and methane-producing 32 microorganisms in patients with, Irritable Bowel Syndrome. Sci Rep, vol.5, p.12693, 2015.

E. Varela, C. Manichanh, and M. Gallart, Colonisation by Faecalibacterium prausnitzii and 34 maintenance of clinical remission in patients with ulcerative colitis, Aliment Pharm Ther, vol.35, pp.151-161, 2013.

K. Machiels, M. Joossens, and J. Sabino, A decrease of the butyrate-producing species 37 Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with 38 ulcerative colitis, Gut, vol.63, pp.1275-1283, 2014.

W. Wang, L. P. Chen, and R. Zhou, Increased Proportions of Bifidobacterium and the 40 Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease

, J Clin Microbiol, vol.52, pp.398-406, 2014.

D. Gevers, S. Kugathasan, and L. A. Denson, The Treatment-Naive Microbiome in New-43 Onset Crohn's Disease, Cell Host Microbe, vol.15, pp.382-392, 2014.
DOI : 10.1016/j.chom.2014.02.005

URL : https://doi.org/10.1016/j.chom.2014.02.005

H. Sokol, P. Seksik, and J. P. Furet, Low Counts of Faecalibacterium prausnitzii in Colitis 45 Microbiota, Inflamm Bowel Dis, vol.15, pp.1183-1189, 2009.

W. R. Treem, N. Ahsan, and M. Shoup, Fecal Short-Chain Fatty-Acids in Children with 47 Inflammatory Bowel-Disease, J Pediatr Gastr Nutr, vol.18, pp.159-164, 1994.

J. R. Marchesi, E. Holmes, and F. Khan, Rapid and noninvasive metabonomic 49 characterization of inflammatory bowel disease, J Proteome Res, vol.6, pp.546-551, 2007.
DOI : 10.1021/pr060470d

V. Eeckhaut, K. Machiels, and C. Perrier, Butyricicoccus pullicaecorum in inflammatory 1 bowel disease, Gut, vol.62, pp.1745-1752, 2013.

F. Turroni, C. Milani, and S. Duranti, Deciphering bifidobacterial-mediated metabolic 3 interactions and their impact on gut microbiota by a multi-omics approach, Isme J, 2016.
DOI : 10.1038/ismej.2015.236

URL : https://www.nature.com/articles/ismej2015236.pdf

J. M. Harig, K. H. Soergel, and R. A. Komorowski, Treatment of diversion colitis with short-5 chain-fatty acid irrigation, N Engl J Med, vol.320, pp.23-28, 1989.

W. Scheppach, H. P. Bartram, and F. Richter, Treatment of distal ulcerative colitis with 7 short-chain fatty acid enemas -A placebo-controlled trial, Digest Dis Sci, vol.41, pp.2254-2259, 1996.

W. Scheppach, H. Sommer, and T. Kirchner, Effect of Butyrate Enemas on the Colonic 9 Mucosa in Distal Ulcerative-Colitis, Gastroenterology, vol.103, pp.51-56, 1992.

R. I. Breuer, S. K. Buto, and M. L. Christ, Rectal Irrigation with Short-Chain Fatty-Acids for

, Distal Ulcerative-Colitis -Preliminary-Report. Digest Dis Sci, vol.36, pp.185-187, 1991.

R. Thibault, D. Coppet, P. Daly, and K. , Down-regulation of the monocarboxylate 13 transporter 1 is involved in butyrate deficiency during intestinal inflammation

, Gastroenterology, vol.133, pp.1916-1927, 2007.

A. Borthakur, A. N. Anbazhagan, and A. Kumar, The probiotic Lactobacillus plantarum 16 counteracts TNF-{alpha}-induced downregulation of SMCT1 expression and function, Am J 17 Physiol Gastrointest Liver Physiol, vol.299, pp.928-934, 2010.

N. D. Mathewson, R. Jenq, and A. V. Mathew, Gut microbiome-derived metabolites modulate 19 intestinal epithelial cell damage and mitigate graft-versus-host disease, Nat Immunol, vol.20, pp.505-518, 2016.
DOI : 10.1038/ni.3400

URL : http://europepmc.org/articles/pmc4836986?pdf=render

J. Maul, C. Loddenkemper, and P. Mundt, Peripheral and intestinal regulatory 22 CD4+CD25(high) T cells in inflammatory bowel disease, Gastroenterology, vol.128, p.1878, 2005.

N. Holmen, A. Lundgren, and S. Lundin, Functional CD4+CD25high regulatory T cells 25 are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with 26 disease activity, Inflamm Bowel Dis, vol.12, pp.447-456, 2006.

M. Saruta, Q. T. Yu, and P. R. Fleshner, Characterization of FOXP3(+)CD4(+) regulatory T 28 cells in Crohn's disease, Clin Immunol, vol.125, pp.281-290, 2007.

Y. P. Rubtsov, R. E. Niec, and S. Josefowicz, Stability of the Regulatory T Cell Lineage in 30 Vivo, Science, vol.329, pp.1667-1671, 2010.

L. Zhou, J. E. Lopes, and M. M. Chong, TGF-beta-induced Foxp3 inhibits T(H)17 cell 32 differentiation by antagonizing RORgammat function, Nature, vol.453, pp.236-240, 2008.
DOI : 10.1038/nature06878

URL : https://www.nature.com/articles/nature06878.pdf

C. Koenecke, N. Czeloth, and A. Bubke, Alloantigen-specific de novo-induced Foxp3+
DOI : 10.1002/eji.200939432

URL : https://hal.archives-ouvertes.fr/hal-00431886

, Treg revert in vivo and do not protect from experimental GVHD, Eur J Immunol, vol.35, pp.3091-3096, 2009.

B. Hoechst, J. Gamrekelashvili, and M. P. Manns, Plasticity of human Th17 cells and iTregs 37 is orchestrated by different subsets of myeloid cells, Blood, vol.117, pp.6532-6541, 2011.

Y. Xiao, B. Li, and Z. C. Zhou, Histone acetyltransferase mediated regulation of FOXP3 39 acetylation and Treg function, Curr Opin Immunol, vol.22, pp.583-591, 2010.
DOI : 10.1016/j.coi.2010.08.013

URL : http://europepmc.org/articles/pmc2967626?pdf=render

E. Marino, J. L. Richards, and K. H. Mcleod, Gut microbial metabolites limit the frequency 41 of autoimmune T cells and protect against type 1 diabetes, Mucosal immunology, vol.42, pp.210-214, 2014.

S. Vermeire, M. Joossens, and K. Verbeke, Donor Species Richness Determines Faecal 45
DOI : 10.1093/ecco-jcc/jjv203

URL : https://academic.oup.com/ecco-jcc/article-pdf/10/4/387/13746252/jjv203.pdf

, Microbiota Transplantation Success in Inflammatory Bowel Disease, J Crohns Colitis, vol.46, pp.387-394, 2016.

P. R. Gibson, The intracellular target of butyrate's actions: HDAC or HDON'T?, Gut, vol.48, pp.447-448, 2000.

R. Heidor, J. F. Ortega, and A. De-conti, Anticarcinogenic actions of tributyrin, a butyric 1 acid prodrug, Current drug targets, vol.13, pp.1720-1729, 2012.

T. Reid, F. Valone, and W. Lipera, Phase II trial of the histone deacetylase inhibitor 3 pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer, Lung 4 Cancer, vol.45, pp.381-386, 2004.

S. N. Kang, E. Lee, and M. K. Lee, Preparation and evaluation of tributyrin emulsion as a 6 potent anti-cancer agent against melanoma, Drug Deliv, vol.18, pp.143-149, 2011.