E. Gould, J. Pettersson, S. Higgs, R. Charrel, and X. De-lamballerie, Emerging arboviruses: Why today?, One Health, vol.4, pp.1-13, 2017.

J. D. Lines, Do agricultural insecticides select for insecticide resistance in mosquitoes? A look at the evidence, Parasitology Today, vol.4, issue.7, pp.S17-S20, 1988.

M. Raymond, C. Berticat, M. Weill, N. Pasteur, and C. Chevillon, Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112 -113, Genetica, vol.112/113, pp.287-296, 2001.

P. Labbe, T. Lenormand, and M. Raymond, On the worldwide spread of an insecticide resistance gene: a role for local selection, Journal of Evolutionary Biology, vol.18, issue.6, pp.1471-1484, 2005.
URL : https://hal.archives-ouvertes.fr/halsde-00193161

P. Labbé, J. David, H. Alout, P. Milesi, L. Djogbénou et al., Evolution of Resistance to Insecticide in Disease Vectors, Genetics and Evolution of Infectious Diseases, pp.313-339, 2017.

D. Martinez-torres, F. Chandre, M. S. Williamson, F. Darriet, J. B. Bergé et al., Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s, .x) 7. ffrench-Constant RH, vol.7, pp.449-466, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02698787

M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu et al., Insecticide resistance in mosquito vectors, Nature, vol.423, issue.6936, pp.136-137, 2003.
URL : https://hal.archives-ouvertes.fr/halsde-00186375

C. Berticat, G. Boquien, M. Raymond, and C. Chevillon, Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes, Genetical Research, vol.79, issue.1, pp.41-47, 2002.
URL : https://hal.archives-ouvertes.fr/halsde-00186376

C. Berticat, O. Duron, D. Heyse, and M. Raymond, Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens, Genetical Research, vol.83, issue.3, pp.189-196, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00186371

D. Bourguet, T. Guillemaud, C. Chevillon, and M. Raymond, FITNESS COSTS OF INSECTICIDE RESISTANCE IN NATURAL BREEDING SITES OF THE MOSQUITO CULEX PIPIENS, Evolution, vol.58, issue.1, pp.128-135, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02674721

P. Agnew, C. Berticat, S. Bedhomme, C. Sidobre, and Y. Michalakis, PARASITISM INCREASES AND DECREASES THE COSTS OF INSECTICIDE RESISTANCE IN MOSQUITOES, Evolution, vol.58, issue.3, pp.579-586, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01960615

O. Duron, P. Labbé, C. Berticat, F. Rousset, S. Guillot et al., HIGH WOLBACHIA DENSITY CORRELATES WITH COST OF INFECTION FOR INSECTICIDE RESISTANT CULEX PIPIENS MOSQUITOES, Evolution, vol.60, issue.2, pp.303-314, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01946020

P. Milesi, B. S. Assogba, C. M. Atyame, N. Pocquet, A. Berthomieu et al., The evolutionary fate of heterogeneous gene duplications: a precarious overdominant equilibrium between environment, sublethality and complementation, Mol. Ecol, vol.27, pp.861-864, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01944241

P. Milesi, T. Lenormand, C. Lagneau, M. Weill, and P. Labbé, Relating fitness to long-term environmental variations in natura, Molecular Ecology, vol.25, issue.21, pp.5483-5499, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01944379

C. Berticat, F. Rousset, M. Raymond, A. Berthomieu, and M. Weill, HighWolbachiadensity in insecticide?resistant mosquitoes, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol.269, issue.1498, pp.1413-1416, 2002.

P. Echaubard, O. Duron, P. Agnew, C. Sidobre, V. Noël et al., Rapid evolution of Wolbachia density in insecticide resistant Culex pipiens, Heredity, vol.104, issue.1, pp.15-19, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00567084

A. F. Howard, C. J. Koenraadt, M. Farenhorst, B. G. Knols, and W. Takken, Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, Malaria Journal, vol.9, issue.1, 2010.

N. Dada, M. Sheth, K. Liebman, J. Pinto, and A. Lenhart, Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors, Scientific Reports, vol.8, issue.1, 2018.

L. Mccarroll and J. Hemingway, Can insecticide resistance status affect parasite transmission in mosquitoes?, Insect Biochemistry and Molecular Biology, vol.32, issue.10, pp.1345-1351, 2002.

J. Cote, A. Dreiss, and J. Clobert, Social personality trait and fitness, Proceedings of the Royal Society B: Biological Sciences, vol.276, issue.1657, pp.787-787, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02120937

H. Alout, N. T. Ndam, M. M. Sandeu, I. Djégbe, F. Chandre et al., Insecticide Resistance Alleles Affect Vector Competence of Anopheles gambiae s.s. for Plasmodium falciparum Field Isolates, PLoS ONE, vol.8, issue.5, p.e63849, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02653010

H. Alout, B. Yameogo, L. S. Djogbenou, F. Chandre, R. K. Dabire et al., Interplay Between Plasmodium Infection and Resistance to Insecticides in Vector Mosquitoes, Journal of Infectious Diseases, vol.210, issue.9, pp.1464-1470, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641602

B. Kabula, P. Tungu, E. J. Rippon, K. Steen, W. Kisinza et al., A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers, Malaria Journal, vol.15, issue.1, 2016.

C. Berticat, M. P. Dubois, M. Marquine, C. Chevillon, and M. Raymond, A molecular test to identify resistance alleles at the amplified esterase locus in the mosquito Culex pipiens, Pest Manag. Sci, vol.56, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02188813

M. Weill, A. Berthomieu, C. Berticat, G. Lutfalla, V. Nègre et al., Insecticide resistance: a silent base prediction, Current Biology, vol.14, issue.14, pp.R552-R553, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01946061

E. H. Ndiaye, G. Fall, A. Gaye, N. S. Bob, C. Talla et al., Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus, Parasites & Vectors, vol.9, issue.1, 2016.

B. Murgue, S. Murri, S. Zientara, B. Durand, J. Durand et al., West Nile Outbreak in Horses in Southern France, 2000: The Return after 35 Years, Emerging Infectious Diseases, vol.7, issue.4, pp.692-696, 2001.

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille, and A. Failloux, Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection, PLoS ONE, vol.4, issue.6, p.e5895, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00395262

. R-core-team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2017.

J. Fox and S. Weisberg, Least-squares means: the R Package lsmeans, J. Stat. Softw, vol.69, pp.1-33, 2011.

A. T. Ciota, West Nile virus and its vectors, Current Opinion in Insect Science, vol.22, pp.28-36, 2017.

M. J. Turell, W. C. Wilson, and K. E. Bennett, Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus, Journal of Medical Entomology, vol.47, issue.5, pp.884-889, 2010.

T. Balenghien, E. Cardinale, V. Chevalier, N. Elissa, A. Failloux et al., Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean, Veterinary Research, vol.44, issue.1, p.78, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00868770

S. Moutailler, G. Krida, F. Schaffner, M. Vazeille, and A. Failloux, Potential Vectors of Rift Valley Fever Virus in the Mediterranean Region, Vector-Borne and Zoonotic Diseases, vol.8, issue.6, pp.749-754, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01696142

A. Franz, A. Kantor, A. L. Passarelli, and R. Clem, Tissue Barriers to Arbovirus Infection in Mosquitoes, Viruses, vol.7, issue.7, pp.3741-3767, 2015.

M. J. Turell, D. J. Dohm, C. N. Mores, L. Terracina, D. L. Wallette et al., Potential for North American Mosquitoes to Transmit Rift Valley Fever Virus1, Journal of the American Mosquito Control Association, vol.24, issue.4, pp.502-507, 2008.

S. Moutailler, G. Krida, Y. Madec, M. Bouloy, and A. Failloux, Replication of Clone 13, a Naturally Attenuated Avirulent Isolate of Rift Valley Fever Virus, inAedesandCulexmosquitoes, Vector-Borne and Zoonotic Diseases, vol.10, issue.7, pp.681-688, 2010.

T. M. Lo and M. Coetzee, Marked biological differences between insecticide resistant and susceptible strains of Anopheles funestus infected with the murine parasite Plasmodium berghei, Parasites & Vectors, vol.6, issue.1, 2013.

J. Vézilier, A. Nicot, S. Gandon, and A. Rivero, Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum, Malaria Journal, vol.9, issue.1, 2010.

F. Zele, J. Vezilier, L. 'ambert, G. Nicot, A. Gandon et al., Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance, Parasit. Vectors, vol.7, p.437, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02361672

C. Mitri, K. Markianos, W. M. Guelbeogo, E. Bischoff, A. Gneme et al., The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing, Malaria Journal, vol.14, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02008321

A. Rivero, A. Magaud, A. Nicot, and J. Vézilier, Energetic Cost of Insecticide Resistance in Culex pipiens Mosquitoes, Journal of Medical Entomology, vol.48, issue.3, pp.694-700, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02361717

A. Molina-cruz, R. J. Dejong, B. Charles, L. Gupta, S. Kumar et al., Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium, Journal of Biological Chemistry, vol.283, issue.6, pp.3217-3223, 2007.

X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.E23-E31, 2011.

J. Vontas, C. Blass, A. C. Koutsos, J. David, F. C. Kafatos et al., Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure, Insect Molecular Biology, vol.14, issue.5, pp.509-521, 2005.
URL : https://hal.archives-ouvertes.fr/halsde-00317779

J. Vontas, J. David, D. Nikou, J. Hemingway, G. K. Christophides et al., Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization, Insect Molecular Biology, vol.16, issue.3, pp.315-324, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00316515

J. Vizioli, P. Bulet, M. Charlet, C. Lowenberger, C. Blass et al., Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae, Insect Molecular Biology, vol.9, issue.1, pp.75-84, 2000.

Z. Xi, J. L. Ramirez, and G. Dimopoulos, The Aedes aegypti Toll Pathway Controls Dengue Virus Infection, PLoS Pathogens, vol.4, issue.7, p.e1000098, 2008.

S. Hegde, J. L. Rasgon, and G. L. Hughes, The microbiome modulates arbovirus transmission in mosquitoes, Current Opinion in Virology, vol.15, pp.97-102, 2015.