A. R. Bharti, Leptospirosis: a zoonotic disease of global importance, Lancet Infect Dis, vol.3, pp.757-771, 2003.

L. Smythe, Classification of Leptospira genomospecies 1, 3, 4 and 5 as Leptospira alstonii sp. nov., Leptospira vanthielii sp. nov., Leptospira terpstrae sp. nov. and Leptospira yanagawae sp. nov., respectively, Int J Syst Evol Microbiol, vol.63, pp.1859-1862, 2013.

B. Adler, . De-la-peña, A. Moctezuma, . Leptospira, and . Leptospirosis, Vet Microbiol, vol.140, pp.287-296, 2010.

A. J. Mcbride, D. A. Athanazio, M. G. Reis, A. I. Ko, and . Leptospirosis, Curr Opin Infect Dis, vol.18, pp.376-386, 2005.

E. R. Segura, Clinical spectrum of pulmonary involvement in leptospirosis in a region of endemicity, with quantification of leptospiral burden, Clin Infect Dis, vol.40, pp.343-351, 2005.

I. S. Girons, The LE1 bacteriophage replicates as a plasmid within Leptospira biflexa: construction of an L. biflexa-Escherichia coli shuttle vector, J Bacteriol, vol.182, pp.5700-5705, 2000.

M. Picardeau, Conjugative transfer between Escherichia coli and Leptospira spp. as a new genetic tool, Appl Environ Microbiol, vol.74, pp.319-322, 2008.

C. J. Pappas, N. Benaroudj, and M. Picardeau, A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains, Appl Environ Microbiol, vol.81, pp.3176-3181, 2015.

G. L. Murray, Genome-wide transposon mutagenesis in pathogenic Leptospira species, Infect Immun, vol.77, pp.810-816, 2009.

H. P?tro?ová and M. Picardeau, Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance, Appl Environ Microbiol, vol.80, pp.6091-6103, 2014.

L. Slamti and M. Picardeau, Construction of a library of random mutants in the spirochete Leptospira biflexa using a mariner transposon, Methods Mol Biol, vol.859, pp.169-176, 2012.

M. Picardeau and A. Brenot, & Saint Girons, I. First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella, Mol Microbiol, vol.40, pp.189-199, 2001.

J. Croda, Targeted mutagenesis in pathogenic Leptospira species: disruption of the LigB gene does not affect virulence in animal models of leptospirosis, Infect Immun, vol.76, pp.5826-5833, 2008.

L. Zhang, The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals, Mol Microbiol, vol.83, pp.1006-1023, 2012.

M. Kebouchi, Structure and function of the Leptospira interrogans peroxide stress regulator (PerR), an atypical PerR devoid of a structural metal-binding site, J Biol Chem, vol.293, pp.497-509, 2018.

C. J. Pappas and M. Picardeau, Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence, Appl Environ Microbiol, vol.81, pp.7888-7892, 2015.

Y. Jiang, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl Environ Microbiol, vol.81, pp.2506-2514, 2015.

R. S. Shapiro, A. Chavez, and J. J. Collins, CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms, Nat Rev Microbiol, vol.16, pp.333-339, 2018.

R. Barrangou, CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

, Scientific RepoRts |, vol.9, p.1839, 2019.

J. E. Garneau, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, pp.67-71, 2010.

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

K. Chylinski, K. S. Makarova, E. Charpentier, and E. V. Koonin, Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Res, vol.42, pp.6091-6105, 2014.

R. E. Cobb, Y. Wang, and H. Zhao, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/ Cas system, ACS Synth Biol, vol.4, pp.723-728, 2015.

J. E. Dicarlo, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res, vol.41, pp.4336-4343, 2013.

P. Mali, RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826, 2013.

Q. Shan, Targeted genome modification of crop plants using a CRISPR-Cas system, Nat Biotechnol, vol.31, pp.686-688, 2013.

Y. Wang, The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori, Cell Res, vol.23, pp.1414-1416, 2013.

M. Crispo, Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes, PLoS One, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02148360

M. Grzybek, The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites, Appl Microbiol Biotechnol, vol.102, pp.4629-4640, 2018.

N. Rudin, E. Sugarman, and J. E. Haber, Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae, Genetics, vol.122, pp.519-534, 1989.

M. R. Lieber, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu Rev Biochem, vol.79, pp.181-211, 2010.

A. Choulika, A. Perrin, B. Dujon, and J. F. Nicolas, Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae, Mol Cell Biol, vol.15, pp.1968-1973, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02012603

L. A. Matthews and L. A. Simmons, Bacterial nonhomologous end joining requires teamwork, J Bacteriol, vol.196, pp.3363-3365, 2014.

E. Weterings and D. C. Van-gent, The mechanism of non-homologous end-joining: a synopsis of synapsis, DNA Repair (Amst), vol.3, pp.1425-1435, 2004.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.12, pp.177-186, 2012.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia coli, Nucleic Acids Res, vol.44, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

L. S. Qi, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

C. Zhao, X. Shu, and B. Sun, Construction of a Gene Knockdown System Based on Catalytically Inactive, Appl Environ Microbiol, vol.83, 2017.

E. Choudhary, P. Thakur, M. Pareek, and N. Agarwal, Gene silencing by CRISPR interference in mycobacteria, Nat Commun, vol.6, 2015.

D. Bikard, Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids Res, vol.41, pp.7429-7437, 2013.

Y. Zhao, CRISPR/dCas9-mediated multiplex gene repression in Streptomyces, Biotechnol J, 2018.

S. Z. Tan, C. R. Reisch, and K. L. Prather, A Robust CRISPR Interference Gene Repression System in Pseudomonas, J Bacteriol, 2018.

L. H. Turner and . Leptospirosis, 3 Maintenance, isolation and demonstration of leptospires, Trans R Soc Trop Med Hyg, vol.64, pp.623-646, 1970.

G. Demarre, A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains, Res Microbiol, vol.156, pp.245-255, 2005.

B. F. Cress, Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli, Nucleic Acids Res, vol.44, pp.4472-4485, 2016.

H. Ochman, A. S. Gerber, and D. L. Hartl, Genetic applications of an inverse polymerase chain reaction, Genetics, vol.120, pp.621-623, 1988.

A. Gautam, M. Hathaway, and R. Ramamoorthy, The Borrelia burgdorferi flaB promoter has an extended -10 element and includes a T-rich -35/-10 spacer sequence that is essential for optimal activity, FEMS Microbiol Lett, vol.293, pp.278-284, 2009.

A. Zhukova, Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen, Front Cell Infect Microbiol, vol.7, 2017.

H. Louvel and M. Picardeau, Genetic manipulation of Leptospira biflexa, Curr Protoc Microbiol Chapter, 2007.

T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church, and E. Valen, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing, Nucleic Acids Res, vol.42, pp.401-407, 2014.

C. Li, H. Xu, K. Zhang, and F. T. Liang, Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity, Mol Microbiol, vol.75, pp.1563-1576, 2010.

Y. Sasaki, Leptospiral flagellar sheath protein FcpA interacts with FlaA2 and FlaB1 in Leptospira biflexa, PLoS One, vol.13, 2018.

E. A. Wunder, FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete, Front Cell Infect Microbiol, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02100036

P. Ristow, The OmpA-like protein Loa22 is essential for leptospiral virulence, PLoS Pathog, vol.3, 2007.

S. A. Narayanavari, K. Lourdault, M. Sritharan, D. A. Haake, and J. Matsunaga, Role of sph2 Gene Regulation in Hemolytic and Sphingomyelinase Activities Produced by Leptospira interrogans, PLoS Negl Trop Dis, vol.9, 2015.

A. M. King, High-temperature protein G is an essential virulence factor of Leptospira interrogans, Infect Immun, vol.82, pp.1123-1131, 2014.

A. Lambert, FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath, Infect Immun, vol.80, 2012.

, Scientific RepoRts |, vol.9, p.1839, 2019.

G. L. Murray, Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence, Mol Microbiol, vol.78, pp.701-709, 2010.

A. L. Nascimento, Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis, J Bacteriol, vol.186, pp.2164-2172, 2004.

A. L. Nascimento, Genome features of Leptospira interrogans serovar Copenhageni, Braz J Med Biol Res, vol.37, pp.459-477, 2004.

M. V. Wiles, W. Qin, A. W. Cheng, and H. Wang, CRISPR-Cas9-mediated genome editing and guide RNA design, Mamm Genome, vol.26, pp.501-510, 2015.

T. Gaj, C. A. Gersbach, C. F. Barbas, T. Zfn, and C. , Cas-based methods for genome engineering, Trends Biotechnol, vol.31, pp.397-405, 2013.

X. Wu, A. J. Kriz, and P. A. Sharp, Target specificity of the CRISPR-Cas9 system, Quant Biol, vol.2, pp.59-70, 2014.

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat Biotechnol, vol.32, pp.1141-1145, 2014.

A. A. Gomaa, Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems, MBio, vol.5, pp.928-00913, 2014.

R. S. Pitcher, Structure and function of a mycobacterial NHEJ DNA repair polymerase, J Mol Biol, vol.366, pp.391-405, 2007.

C. Gong, Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C, Nat Struct Mol Biol, vol.12, pp.304-312, 2005.

L. Aravind and E. V. Koonin, Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system, Genome Res, vol.11, pp.1365-1374, 2001.

J. Aniukwu, M. S. Glickman, and S. Shuman, The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends, Genes Dev, vol.22, pp.512-527, 2008.

T. Xu, Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase, Appl Environ Microbiol, vol.81, pp.4423-4431, 2015.

J. M. Peters, A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria, Cell, vol.165, pp.1493-1506, 2016.

A. Zuberi, L. Misba, and A. U. Khan, CRISPR Interference (CRISPRi) Inhibition of luxS, Gene Expression In. Front Cell Infect Microbiol, vol.7, 2017.

A. K. Singh, Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system, Nucleic Acids Res, vol.44, 2016.

S. K. Kim, W. Seong, G. H. Han, D. H. Lee, and S. G. Lee, CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli, Microb Cell Fact, vol.16, 2017.

F. D. Schramm, K. Heinrich, M. Thüring, J. Bernhardt, and K. Jonas, An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus, PLoS Genet, vol.13, 2017.