Q. Liu and G. Dreyfuss, A novel nuclear structure containing the survival of motor neurons protein, EMBO J, vol.15, pp.3555-3565, 1996.

S. Lefebvre, Correlation between severity and SMN protein level in spinal muscular atrophy, Nat Genet, vol.16, pp.265-269, 1997.

T. Carvalho, The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body, J Cell Biol, vol.147, pp.715-743, 1999.

M. D. Hebert, P. W. Szymczyk, K. B. Shpargel, and A. G. Matera, Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein, Genes Dev, vol.15, pp.2720-2729, 2001.

G. E. Morris, The Cajal body, Biochim Biophys Acta, vol.1783, pp.2108-2115, 2008.

M. Machyna, The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies, Mol Cell, vol.56, pp.389-399, 2014.

T. Yamazaki, FUS-SMN protein interactions link the motor neuron diseases ALS and SMA, Cell Rep, vol.2, pp.799-806, 2012.

H. Tsuiji, Spliceosome integrity is defective in the motor neuron diseases ALS and SMA, EMBO Mol Med, vol.5, pp.221-234, 2013.

S. Sun, ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP, Nat Commun, vol.6, pp.6171-6184, 2015.

S. Lefebvre, Identification and characterization of a spinal muscular atrophy-determining gene, Cell, vol.80, pp.155-165, 1995.

A. H. Burghes and C. E. Beattie, Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?, Nat Rev Neurosci, vol.10, pp.597-609, 2009.

C. L. Lorson, E. Hahnen, E. J. Androphy, and B. Wirth, A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy, Proc. Natl. Acad. Sci. USA, vol.96, pp.6307-6311, 1999.

L. Cartegni and A. R. Krainer, DisruptionofanSF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1, Nat. Genet, vol.30, pp.377-384, 2002.

T. Kashima and J. L. Manley, A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy, Nat. Genet, vol.34, pp.460-463, 2003.

A. C. Raimer, K. M. Gray, and A. G. Matera, SMN -A chaperone for nuclear RNP social occasions?, RNA Biology, vol.0, pp.1-11, 2016.

M. C. Wahl, C. L. Will, and R. Lührmann, The spliceosome: design principles of a dynamic RNP machine, Cell, vol.136, pp.701-718, 2009.

L. Pellizzoni, J. Yong, and G. Dreyfuss, Essential role for the SMN complex in the specificity of snRNP assembly, Science, vol.298, pp.1775-1779, 2002.

G. Meister, D. Bühler, R. Pillai, F. Lottspeich, and U. Fischer, A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs, Nat Cell Biol, vol.3, pp.945-949, 2001.

D. D. Coovert, The survival motor neuron protein in spinal muscular atrophy, Hum Mol Genet, vol.6, pp.1205-1214, 1997.

L. Wan, The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy, Mol Cell Biol, vol.25, pp.5543-5551, 2005.

F. Gabanella, Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs, PLoS One, vol.2, p.921, 2007.

Z. Zhang, Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy, Cell, vol.133, pp.585-600, 2008.

B. R. So, A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange, Nat Struct Mol Biol, vol.23, pp.225-230, 2016.

N. Boulisfane, Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient, Hum Mol Genet, vol.20, pp.641-648, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193506

F. Lotti, An SMN-dependent U12 splicing event essential for motor circuit function, Cell, vol.151, pp.440-454, 2012.

Z. Zhang, Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy, Proc Natl Acad Sci, vol.110, pp.19348-19353, 2013.

J. N. Sleigh, Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy, Hum Mol Genet, vol.23, pp.855-869, 2014.

K. See, SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy, Hum Mol Genet, vol.23, pp.1754-1770, 2014.

M. Jangia, SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage, vol.7, pp.2347-2356, 2017.

M. Salton and T. Misteli, Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy, Trends Mol Med, vol.22, pp.28-37, 2016.

S. Bonnal, L. Vigevani, and J. Valcárcel, The spliceosome as a target of novel antitumour drugs, Nat Rev Drug Discov, vol.11, pp.847-859, 2012.

J. Soret, Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors, Proc Natl Acad Sci, vol.102, pp.8764-8769, 2005.

I. Younis, Rapid-Response Splicing Reporter Screens Identify Differential Regulators of Constitutive and Alternative Splicing, Mol Cell Biol, vol.30, pp.1718-1728, 2010.

A. Pawellek, Identification of small molecule inhibitors of pre-mRNA splicing, J Biol Chem, vol.289, pp.34683-34698, 2014.

A. N. Calder, E. J. Androphy, and K. J. Hodgetts, Small Molecules in Development for the Treatment of Spinal Muscular Atrophy, J Med Chem, vol.59, pp.10067-10083, 2016.

N. J. Kramer and A. D. Gitler, Raise the Roof: Boosting the Efficacy of a Spinal Muscular Atrophy Therapy, Neuron, vol.93, pp.3-5, 2017.

S. Lefebvre, A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy, Hum Mol Genet, vol.11, pp.1017-1027, 2002.

H. M. Hsieh-li, A mouse model for spinal muscular atrophy, Nat Genet, vol.24, pp.66-70, 2000.

O. Biondi, In Vivo NMDA Receptor Activation Accelerates Motor Unit Maturation, Protects Spinal Motor Neurons, and Enhances SMN2 Gene Expression in Severe Spinal Muscular Atrophy Mice, J. Neurosci, vol.30, pp.11288-11299, 2010.

G. Z. Mentis, Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy, Neuron, vol.69, pp.453-467, 2011.

A. Friese, Gamma and alpha motor neurons distinguished by expression of transcription factor Err3, Proc Natl Acad Sci, vol.106, pp.13588-13593, 2009.

O. Biondi, Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, vol.28, pp.953-962, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00306035

S. Schiaffino and C. Reggiani, Fiber types in mammalian skeletal muscles, Physiol Rev, vol.91, pp.1447-531, 2011.

, SCIENtIFIC RepoRts |, vol.8, 2018.

D. Pette and R. S. Staron, Myosin isoforms, muscle fiber types, and transitions, Microsc Res Tech, vol.50, pp.500-509, 2000.

C. M. Lutz, Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy, J Clin Invest, vol.121, pp.3029-3041, 2011.

R. G. Gogliotti, Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction, J Neurosci, vol.32, pp.3818-3829, 2012.

S. Kariya, Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy, Hum Mol Genet, vol.17, pp.2552-2569, 2008.

L. M. Murray, K. Talbot, and T. H. Gillingwater, Review: neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy, Neuropathol Appl Neurobiol, vol.36, pp.133-156, 2010.

T. L. Lin, Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides, PLoS One, vol.11, p.154723, 2016.

N. Salah-mohellibi, Bone marrow transplantation attenuates the myopathic phenotype of a muscular mouse model of spinal muscular atrophy, Stem Cells, vol.24, pp.2723-2732, 2006.

S. Braun, B. Croizat, M. C. Lagrange, J. M. Warter, and P. Poindron, Constitutive muscular abnormalities in culture in spinal muscular atrophy, Lancet, vol.345, pp.694-695, 1995.

J. G. Boyer, Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy, Hum Mol Genet, vol.23, pp.4249-4259, 2014.
DOI : 10.1093/hmg/ddu142

URL : http://europepmc.org/articles/pmc4103674?pdf=render

K. V. Bricceno, Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics, Hum Mol Genet, vol.23, pp.4745-4757, 2014.
DOI : 10.1093/hmg/ddu189

URL : https://academic.oup.com/hmg/article-pdf/23/18/4745/17260432/ddu189.pdf

R. Martínez-hernández, S. Bernal, L. Alias, and E. F. Tizzano, Abnormalities in early markers of muscle involvement support a delay in myogenesis in spinal muscular atrophy, J Neuropathol Exp Neurol, vol.73, pp.559-567, 2014.

K. K. Ling, R. M. Gibbs, Z. Feng, and C. P. Ko, Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy, Hum Mol Genet, vol.21, pp.185-195, 2012.

Y. Hua, Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model, Nature, vol.478, pp.123-126, 2011.

D. Bäumer, O. Ansorge, M. Almeida, and K. Talbot, The role of RNA processing in the pathogenesis of motor neuron degeneration, Expert Rev Mol Med, vol.12, p.21, 2010.

C. Winkler, Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy, Genes Dev, vol.19, pp.2320-2330, 2005.
DOI : 10.1101/gad.342005

URL : http://genesdev.cshlp.org/content/19/19/2320.full.pdf

R. G. Gogliotti, S. M. Hammond, C. Lutz, and C. J. Didonato, Molecular and phenotypic reassessment of an infrequently used mouse model for spinal muscular atrophy, Biochem Biophys Res Commun, vol.391, pp.517-522, 2010.
DOI : 10.1016/j.bbrc.2009.11.090

URL : http://europepmc.org/articles/pmc2814331?pdf=render

T. K. Doktor, RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns, Nucleic Acids Res, vol.45, pp.395-416, 2017.

S. Shukla and R. Parker, Quality control of assembly-defective U1 snRNAs by decapping and 5?-to-3? exonucleolytic digestion, Proc Natl Acad Sci, vol.111, pp.3277-3286, 2014.
DOI : 10.1073/pnas.1412614111

URL : http://europepmc.org/articles/pmc4136611?pdf=render

D. Stan?k, Cajal bodies and snRNPs -friends with benefits, RNA Biol, vol.14, pp.1-9, 2016.

A. I. Lamond and M. Carmo-fonseca, Localisation of splicing snRNPs in mammalian cells, Mol Biol Rep, vol.18, pp.127-133, 1993.

A. G. Matera and D. C. Ward, Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells, J Cell Biol, vol.121, pp.715-727, 1993.
DOI : 10.1083/jcb.121.4.715

URL : http://jcb.rupress.org/content/121/4/715.full.pdf

M. Platani, I. Goldberg, A. I. Lamond, and J. R. Swedlow, Cajal body dynamics and association with chromatin are ATP-dependent, Nat Cell Biol, vol.4, pp.502-508, 2002.
DOI : 10.1038/ncb809

P. Richard, A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs, EMBO J, vol.22, pp.4283-4293, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00022442

M. Klingauf, D. Stanek, and K. M. Neugebauer, Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling, Mol Biol Cell, vol.17, pp.4972-4981, 2006.
DOI : 10.1091/mbc.e06-06-0513

URL : http://europepmc.org/articles/pmc1679666?pdf=render

I. Novotný, SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies, Cell Rep, vol.10, pp.4429-440, 2015.

Q. Wang, Cajal bodies are linked to genome conformation, Nat Commun, vol.7, 2016.
DOI : 10.1038/ncomms10966

URL : https://www.nature.com/articles/ncomms10966.pdf

R. M. Lardelli, Biallelic mutations in the 3? exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing, Nat Genet, vol.49, pp.457-464, 2017.

P. Renbaum, Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene, Am J Hum Genet, vol.85, pp.281-289, 2009.

J. M. Van-nueten, P. M. Vanhoutte, and . Flunarizine, Drugs Annual: Cardiovascular Drugs, 1984.

S. Jablonka, M. Beck, B. D. Lechner, C. Mayer, and M. Sendtner, Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy, J. Cell Biol, vol.179, pp.139-149, 2007.

R. Ruiz, J. J. Casanas, L. Torres-benito, R. Cano, and L. Tabares, Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice, J. Neurosci, vol.30, pp.849-857, 2010.

F. Roselli and P. Caroni, From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases, Neuron, vol.85, pp.901-910, 2014.
DOI : 10.1016/j.neuron.2014.12.063

URL : https://doi.org/10.1016/j.neuron.2014.12.063

B. Renvoisé, The loss of the snoRNP chaperone Nopp140 from Cajal bodies of patient fibroblasts correlates with the severity of spinal muscular atrophy, Hum Mol Genet, vol.18, pp.1181-1189, 2009.

J. U. Johansson, An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development / function, PLoS Genet, vol.4, p.1000278, 2008.

M. Riessland, SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy, Hum Mol Genet, vol.19, pp.1492-1506, 2010.