G. Zhang, M. Hussain, O. Neill, and S. L. , Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti, Proc Natl Acad Sci U S A, vol.110, pp.10276-10281, 2013.

I. Leparc-goffart, A. Nougairede, and S. Cassadou, Chikungunya in the Americas, Lancet, vol.383, pp.60185-60194, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01213833

M. Solignat, B. Gay, and S. Higgs, Replication cycle of chikungunya: a re-emerging arbovirus, Virology, vol.393, pp.183-197, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420502

C. L. Gardner and K. D. Ryman, Yellow fever: a reemerging threat, Clin Lab Med, vol.30, pp.237-260, 2010.

S. Bhatt, P. W. Gething, and O. J. Brady, The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

C. P. Simmons, J. J. Farrar, and . Nguyen-v-v, N. Engl. J. Med, vol.366, pp.1423-1432, 2012.

D. Diniz, C. De-albuquerque, and L. O. Oliva, Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success, Parasit Vectors, vol.10, p.310, 2017.

G. L. Rezende, A. J. Martins, and C. Gentile, Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle, BMC Dev Biol, vol.8, p.82, 2008.

T. Sota and M. Mogi, Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size, Oecologia, vol.90, pp.353-358, 1992.

J. M. Urbanski, J. B. Benoit, and M. R. Michaud, The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus, Proc Biol Sci, vol.277, pp.2683-2692, 2010.

M. U. Kraemer, M. E. Sinka, and K. A. Duda, The global distribution of the arbovirus vectors Aedes aegypti and Ae, albopictus. Elife, vol.4, p.8347, 2015.

S. R. Christophers, Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure, 1960.

E. J. Murphy, History of African Civilization, 1972.

J. R. Powell, G. -. Soria, A. Kotsakiozi, and P. , Recent history of Aedes aegypti: vector Genomics and Epidemiology records, Bioscience, vol.68, pp.854-860, 2018.

C. E. Smith, The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti, J Trop Med Hyg, vol.59, pp.243-251, 1956.

P. F. Mattingly, New records and a new species of the subgenus Stegomyia (Diptera, Culicidae) from the Ethiopian region, Ann Trop Med Parasitol, vol.47, pp.294-298, 1953.

D. Metselaar, C. R. Grainger, and K. G. Oei, An outbreak of type 2 dengue fever in the Seychelles, probably transmitted by Aedes albopictus (Skuse), Bull. World Health Organ, vol.58, pp.937-943, 1980.

S. A. Elliott, Aedes albopictus in the Solomon and Santa Cruz islands, South Pacific, Trans. R. Soc. Trop. Med. Hyg, vol.74, pp.747-748, 1980.

C. Caminade, J. M. Medlock, and E. Ducheyne, Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios, J R Soc Interface, vol.9, pp.2708-2717, 2012.

M. Q. Benedict, R. S. Levine, and W. A. Hawley, Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis, vol.7, pp.76-85, 2007.

C. Paupy, H. Delatte, and L. Bagny, Aedes albopictus, an arbovirus vector: from the darkness to the light, Microbes Infect, vol.11, pp.1177-1185, 2009.

G. Cancrini, R. Romi, and S. Gabrielli, First finding of Dirofilaria repens in a natural population of Aedes albopictus, Med Vet Entomol, vol.17, pp.448-451, 2003.

M. Pietrobelli, Importance of Aedes albopictus in veterinary medicine, Parassitologia, vol.50, pp.113-115, 2008.

J. Christie, On epidemics of dengue Fever; their Diffusion and Etiology, Ind Med Gaz, vol.17, pp.76-79, 1882.

A. M. Powers and C. H. Logue, Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus, J Gen Virol, vol.88, pp.2363-2377, 2007.

S. Kittisriworapod and S. Thammapalo, Fever with rash outbreak investigation report, Chumpare District, 1991.

J. J. Muyembe-tamfum, C. N. Peyrefitte, and R. Yogolelo, Epidemic of chikungunya virus in 1999 and 200 in the Democratic Republic of the Congo, Med Trop (Mars), vol.63, pp.637-638, 2003.

K. Sergon, C. Njuguna, and R. Kalani, Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Am J Trop Med Hyg, vol.78, pp.333-337, 2004.

K. Sergon, A. A. Yahaya, and J. Brown, Seroprevalence of chikungunya virus infection on Grande Comore Island, union of the Comoros, Am J Trop Med Hyg, vol.76, pp.1189-1193, 2005.

R. C. Sang, O. Ahmed, and O. Faye, Entomologic investigations of a chikungunya virus epidemic in the union of the Comoros, Am J Trop Med Hyg, vol.78, pp.77-82, 2005.

K. R. Singh and K. M. Pavri, Experimental studies with chikungunya virus in Aedes aegypti and Aedes albopictus, Acta Virol, vol.11, pp.517-526, 1967.

H. Delatte, C. Paupy, and J. S. Dehecq, Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control, Parasite, vol.15, pp.3-13, 2008.

G. Borgherini, P. Poubeau, and F. Staikowsky, Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients, Clin Infect Dis, vol.44, pp.1401-1407, 2007.

L. Bagny-beilhe, H. Delatte, and S. A. Juliano, Ecological interactions in Aedes species on Reunion Island, Med Vet Entomol, vol.27, pp.387-397, 2013.

I. Schuffenecker, I. Iteman, and A. Michault, Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak, PLoS Med, vol.3, p.263, 2006.

K. A. Tsetsarkin, D. L. Vanlandingham, and C. E. Mcgee, A single mutation in chikungunya virus affects vector specificity and epidemic potential, PLoS Pathog, vol.3, p.201, 2007.

M. Vazeille, S. Moutailler, and D. Coudrier, Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus, PLoS One, vol.2, p.1168, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00196860

A. M. Powers, Risks to the Americas associated with the continued expansion of chikungunya virus, J Gen Virol, vol.96, pp.1-5, 2015.

D. J. Gubler, The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future, Ann Acad Med Singapore, vol.27, pp.227-234, 1998.

D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin Microbiol Rev, vol.11, pp.480-496, 1998.

S. Hotta, Dengue vector mosquitoes in Japan: the role of Aedes albopictus and Aedes aegypti in the 1942-1944 dengue epidemics of Japan main islands, Med Entomol Zool, vol.49, pp.267-274, 1998.

L. Luo, L. Jiang, and X. Xiao, The dengue preface to endemic in mainland China: the historical largest outbreak by Aedes albopictus in Guangzhou, Infect Dis Poverty, vol.6, p.148, 2014.

L. Lambrechts, T. W. Scott, and D. J. Gubler, Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission, PLoS Negl Trop Dis, vol.4, p.646, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02011027

L. Ruche, G. Souarès, Y. Armengaud, and A. , Euro Surveillance : Bulletin Europeen sur les Maladies Transmissibles =, European Communicable Disease Bulletin, vol.15, 2010.

I. Gjenero-margan, B. Aleraj, and D. Krajcar, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, vol.16, 2010.

G. Rezza, Aedes albopictus and the reemergence of dengue, BMC Public Health, vol.12, p.72, 2012.

J. L. Hardy, The arboviruses: Epidemiology and Ecology, vol.2, pp.87-126, 1988.

J. L. Woodring, S. Higgs, and B. J. Beaty, The Biology of Disease vectors, p.632, 1996.

L. Lambrechts, C. Chevillon, and R. G. Albright, Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors, BMC Evol Biol, vol.9, p.160, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02152278

K. Zouache, A. Fontaine, and A. Vega-rúa, Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential, Proc Biol Sci / R Soc, vol.281, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01680228

L. L. Coffey, A. B. Failloux, and S. C. Weaver, Chikungunya virus-vector interactions, Viruses, vol.6, pp.4628-4663, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01680225

J. Sunarto, D. J. Gubler, and S. Nalim, Epidemic dengue hemorrhagic fever in rural Indonesia. III. Entomological studies, Am J Trop Med Hyg, vol.28, issue.4, pp.717-724, 1979.

L. Rosen, L. E. Roseboom, and D. J. Gubler, Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses, Am J Trop Med Hyg, vol.34, pp.603-615, 1985.

B. W. Alto, M. H. Reiskind, and L. P. Lounibos, Size alters susceptibility of vectors to dengue virus infection and dissemination, Am J Trop Med Hyg, vol.79, pp.688-695, 2008.

M. Vazeille, L. Rosen, and L. Mousson, Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti, Am J Trop Med Hyg, vol.68, pp.203-208, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-01713473

R. H. Whitehead, T. M. Yuill, and D. J. Gould, Experimental infection of Aedes aegypti and Aedes albopictus with dengue viruses, T Roy Soc Trop Med Hyg, vol.65, pp.661-667, 1971.

J. M. Lindh, A. K. Borg-karlson, and F. I. , Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water, Acta Trop, vol.107, pp.242-250, 2008.

S. Alvarez-perez, C. M. Herrera, and C. De-vega, Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities, FEMS Microbiol Ecol, vol.80, pp.591-602, 2012.

A. E. Douglas, Lessons from studying insect symbioses, Cell Host Microbe, pp.359-367, 2011.

A. E. Douglas, The molecular basis of bacterial-insect symbiosis, J Mol Biol, vol.426, pp.3830-3837, 2014.

R. J. Dillon and V. M. Dillon, The gut bacteria of insects: nonpathogenic interactions, Annu Rev Entomol, vol.49, pp.71-92, 2004.

N. A. Moran, J. P. Mccutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts, Annu Rev Genet, vol.42, pp.165-190, 2008.

A. Moya, J. Pereto, and R. Gil, Learning how to live together: genomic insights into prokaryote-animal symbioses, Nat Rev Genet, vol.9, pp.218-229, 2008.

R. D. Berg, The indigenous gastrointestinal microflora, Trends Microbiol, vol.4, pp.430-435, 1996.

B. Charroux and J. Royet, Drosophila immune response: from systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract, Fly (Austin), vol.4, pp.40-47, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566475

X. Pan, G. Zhou, and J. Wu, Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc Natl Acad Sci U S A, vol.109, pp.23-31, 2012.

Z. Xi, J. L. Ramirez, and G. Dimopoulos, The Aedes aegypti toll pathway controls dengue virus infection, PLoS Pathog, vol.4, 2008.

R. Fragkoudis, G. Attarzadeh-yazdi, and A. A. Nash, Advances in dissecting mosquito innate immune responses to arbovirus infection, J Gen Virol, vol.90, pp.2061-2072, 2009.

V. Avadhanula, B. P. Weasner, and G. G. Hardy, A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response, PLoS Pathog, vol.5, p.1000582, 2009.

A. Costa, J. E. Sarnow, and P. , The Imd pathway is involved in antiviral immune responses in Drosophila, PLoS One, vol.4, p.7436, 2009.

P. N. Paradkar, L. Trinidad, and R. Voysey, Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway, Proc Natl Acad Sci U S A, vol.109, pp.18915-18920, 2012.

R. A. Zambon, M. Nandakumar, and V. N. Vakharia, The Toll pathway is important for an antiviral response in Drosophila, Proc Natl Acad Sci U S A, vol.102, pp.7257-7262, 2005.

S. Sim, N. Jupatanakul, and G. Dimopoulos, Mosquito immunity against arboviruses, Viruses, vol.6, pp.4479-4504, 2014.

N. I. Arbouzova and M. P. Zeidler, JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions, Development, vol.133, pp.2605-2616, 2006.

J. C. Hombria and S. Brown, The fertile field of Drosophila Jak/STAT signalling, Curr Biol, vol.12, pp.569-575, 2002.

F. Zhu, H. Ding, and B. Zhu, Transcriptional profiling of Drosophila S2 cells in early response to Drosophila C virus, Virol J, vol.10, p.210, 2013.

J. A. Souza-neto, S. Sim, and G. Dimopoulos, An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense, Proc Natl Acad Sci U S A, vol.106, pp.17841-17846, 2009.

Z. Huang, M. B. Kingsolver, and V. Avadhanula, An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication, J Virol, vol.87, pp.4272-4280, 2013.

M. Mcfarlane, C. Arias-goeta, and E. Martin, Characterization of Aedes aegypti innate-immune pathways that limit chikungunya virus replication, PLoS Negl Trop Dis, vol.8, p.2994, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01343066

R. Fragkoudis, Y. Chi, and R. W. Siu, Semliki Forest virus strongly reduces mosquito host defence signaling, Insect Mol Biol, vol.17, pp.647-656, 2008.

A. B. Barletta, M. C. Nascimento-silva, and O. A. Talyuli, Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti, Parasit Vectors, vol.10, p.103, 2017.

H. R. Sanders, B. D. Foy, and A. M. Evans, Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti, Insect Biochem Molec, vol.35, pp.1293-1307, 2005.

A. B. Failloux, M. Vazeille, and F. Rodhain, Geographic genetic variation in populations of the dengue virus vector Aedes aegypti, J Mol Evol, vol.55, issue.6, pp.653-663, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-01714401

C. F. Bosio, R. E. Fulton, and M. L. Salasek, Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti, Genetics, vol.156, pp.687-698, 2000.

C. Gomez-machorro, K. E. Bennett, L. Munoz, and M. , Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti, Insect Mol Biol, vol.13, pp.637-648, 2004.

K. E. Bennett, D. Flick, and K. H. Fleming, Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti, Genetics, vol.170, pp.185-194, 2005.

V. Nene, J. R. Wortman, and D. Lawson, Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, pp.1718-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

V. Dritsou, P. Topalis, and N. Windbichler, A draft genome sequence of an invasive mosquito: an Italian Aedes albopictus, Pathog Glob Health, vol.109, pp.207-220, 2015.

X. G. Chen, X. Jiang, and J. Gu, Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution, Proc Natl Acad Sci U S A, vol.112, pp.5907-5915, 2015.

R. A. Holt, G. M. Subramanian, and A. Halpern, The genome sequence of the malaria mosquito Anopheles gambiae, Science, vol.298, pp.129-149, 2002.

P. Arensburger, K. Megy, and R. M. Waterhouse, Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics, Science, vol.330, pp.86-88, 2010.

D. K. Mclain, K. S. Rai, and M. J. Fraser, Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup, Heredity (Edinb), vol.58, pp.373-381, 1987.

B. Wct, J. A. Ferrari, and K. S. Rai, Breeding structure of a colonising species: Aedes albopictus (Skuse) in the United States, Heredity (Edinb), vol.60, issue.2, pp.173-181, 1988.

B. Mcclintock, Intranuclear systems controlling gene action and mutation, Brookhaven Symp Biol, issue.8, pp.58-74, 1956.

W. F. Doolittle and C. Sapienza, Selfish genes, the phenotype paradigm and genome evolution, Nature, vol.284, issue.5757, pp.601-603, 1980.

L. E. Orgel and F. H. Crick, Selfish DNA: the ultimate parasite, Nature, vol.284, pp.604-607, 1980.

R. Klaer, S. Kuhn, and E. Tillmann, The sequence of IS4, Mol Gen Genet, vol.181, pp.169-175, 1981.

T. K. Au, P. Agrawal, and R. M. Harshey, Chromosomal integration mechanism of infecting mu virion DNA, J Bacteriol, vol.188, pp.1829-1834, 2006.

A. Bukhari and D. Zipser, Random insertion of Mu-1 DNA within a single gene, Nature (London), vol.236, pp.240-243, 1972.

D. J. Finnegan and . Retrotransposons, Curr Biol, vol.22, 2012.

N. L. Craig, R. Craigie, and M. Gellert, Mobile DNA II, 2002.

V. V. Kapitonov and J. Jurka, Rolling-circle transposons in eukaryotes, Proc Natl Acad Sci U S A, vol.98, pp.8714-8719, 2001.

E. J. Pritham, T. Putliwala, and C. Feschotte, Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses, Gene, vol.390, pp.3-17, 2007.

M. G. Kidwell, Horizontal transfer, Curr Opin Genet Dev, vol.2, pp.868-873, 1992.

M. K. Konkel and M. A. Batzer, A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome, Semin Cancer Biol, vol.20, pp.211-221, 2010.

M. A. Batzer and P. L. Deininger, Alu repeats and human genomic diversity, Nat Rev Genet, vol.3, pp.370-379, 2002.

P. N. Rao and K. Rai, Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes, Heredity (Edinb), vol.59, issue.2, pp.253-258, 1987.

C. Goubert, L. Modolo, and C. Vieira, De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti), Genome Biol Evol, vol.7, pp.1192-1205, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227710

I. Biryukova and T. Ye, Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae, BMC Genomics, vol.16, p.278, 2015.

A. Katzourakis and R. J. Gifford, Endogenous viral elements in animal genomes, PLoS Genet, vol.6, p.1001191, 2010.

M. C. Siomi, K. Sato, and D. Pezic, PIWI-interacting small RNAs: the vanguard of genome defence, Nat Rev Mol Cell Biol, vol.12, pp.246-258, 2011.

M. Bock and J. P. Stoye, Endogenous retroviruses and the human germline, Curr Opin Genet Dev, vol.10, pp.651-655, 2000.

V. A. Belyi, A. J. Levine, and A. M. Skalka, Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes, PLoS Pathog, vol.6, p.1001030, 2010.

C. Gilbert and C. Feschotte, Genomic fossils calibrate the long-term evolution of hepadnaviruses, PLoS Biol, vol.8, 2010.

S. Crochu, S. Cook, and H. Attoui, Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes, J Gen Virol, vol.85, pp.1971-1980, 2004.

Y. Suzuki, L. Frangeul, and L. B. Dickson, Uncovering the Repertoire of endogenous flaviviral elements in Aedes mosquito genomes, J Virol, vol.91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636504

B. G. Bolling, S. C. Weaver, and R. B. Tesh, Insect-Specific Virus discovery: significance for the arbovirus Community, Viruses, vol.7, pp.4911-4928, 2015.

N. Vasilakis and R. B. Tesh, Insect-specific viruses and their potential impact on arbovirus transmission, Curr Opin Virol, vol.15, pp.69-74, 2015.

U. Palatini, P. Miesen, and R. Carballar-lejarazu, Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus, BMC Genomics, vol.18, p.512, 2017.

Z. J. Whitfield, P. T. Dolan, and M. Kunitomi, The diversity, structure, and function of Heritable adaptive immunity sequences in the Aedes aegypti genome

, Curr Biol, vol.27, pp.3511-3519, 2017.

E. C. Holmes, The evolution of endogenous viral elements, Cell Host Microbe, vol.10, pp.368-377, 2011.

P. Fort, A. Albertini, and A. Van-hua, Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality
URL : https://hal.archives-ouvertes.fr/hal-00649757

, Mol Biol Evol, vol.29, pp.381-390, 2012.

K. K. Conzelmann, Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes, Annu Rev Genet, vol.32, pp.123-162, 1998.

D. E. Brackney, J. C. Scott, and F. Sagawa, C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response, PLoS Negl Trop Dis, vol.4, p.856, 2010.

B. Goic, K. A. Stapleford, and L. Frangeul, Virusderived DNA drives mosquito vector tolerance to arboviral infection, Nat Commun, vol.7, p.12410, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01377742

D. K. Nag, M. Brecher, and L. D. Kramer, DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures, Virology, vol.498, pp.164-171, 2016.

D. K. Nag and L. D. Kramer, Patchy DNA forms of the zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes, J Gen Virol, vol.98, pp.2731-2737, 2017.

M. B. Geuking, J. Weber, and M. Dewannieux, Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration, Science, vol.323, pp.393-396, 2009.

V. M. Zhdanov, Integration of viral genomes, Nature, vol.256, pp.471-473, 1975.

B. Goic, N. Vodovar, and J. A. Mondotte, RNAmediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila, Nat Immunol, vol.14, pp.396-403, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01957212

C. A. Bill and J. Summers, Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration, Proc Natl Acad Sci U S A, vol.101, pp.11135-11140, 2004.

R. M. Kotin, R. M. Linden, and K. I. Berns, Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination, Embo J, vol.11, pp.5071-5078, 1992.

E. Urcelay, P. Ward, and S. M. Wiener, Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus Rep protein, J Virol, vol.69, pp.2038-2046, 1995.

S. M. Young and R. J. Samulski, Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat, Proc Natl Acad Sci U S A, vol.98, pp.13525-13530, 2001.

G. Morissette and L. Flamand, Herpesviruses and chromosomal integration, J Virol, vol.84, pp.12100-12109, 2010.

P. Klenerman, H. Hengartner, and R. M. Zinkernagel, A non-retroviral RNA virus persists in DNA form, Nature, vol.390, pp.298-301, 1997.

E. Maori, E. Tanne, and I. Sela, Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes, Virology, vol.362, pp.342-349, 2007.

A. W. Bronkhorst and R. P. Van-rij, The long and short of antiviral defense: small RNA-based immunity in insects, Curr Opin Virol, vol.7, pp.19-28, 2014.

K. E. Olson and C. D. Blair, Arbovirus-mosquito interactions: RNAi pathway, Curr Opin Virol, vol.15, pp.119-126, 2015.

D. J. Obbard, K. H. Gordon, and A. H. Buck, The evolution of RNAi as a defence against viruses and transposable elements, Philos Trans R Soc Lond B Biol Sci, vol.364, pp.99-115, 2009.

E. Sarot, G. Payen-groschene, and A. Bucheton, Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene, Genetics, vol.166, pp.1313-1321, 2004.

K. Saito, K. M. Nishida, and T. Mori, Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome, Genes Dev, vol.20, pp.2214-2222, 2006.

J. Brennecke, A. A. Aravin, and A. Stark, Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, vol.128, pp.1089-1103, 2007.

V. V. Vagin, A. Sigova, and C. Li, A distinct small RNA pathway silences selfish genetic elements in the germline, Science, vol.313, pp.320-324, 2006.

A. Pelisson, E. Sarot, and G. Payen-groschene, A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary, J Virol, vol.81, pp.1951-1960, 2007.

O. S. Akbari, I. Antoshechkin, and H. Amrhein, The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 (Bethesda), vol.3, pp.1493-1509, 2013.

P. Arensburger, R. H. Hice, and J. A. Wright, The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs, BMC Genomics, vol.12, p.606, 2011.

E. M. Morazzani, M. R. Wiley, and M. G. Murreddu, Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma

, PLoS Pathog, vol.8, p.1002470, 2012.

E. Schnettler, C. L. Donald, and S. Human, Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, J Gen Virol, vol.94, pp.1680-1689, 2013.

N. Vodovar, A. W. Bronkhorst, and K. W. Van-cleef, Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells, PLoS One, vol.7, p.30861, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01379361

A. M. Hess, A. N. Prasad, and A. Ptitsyn, Small RNA profiling of dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense, BMC Microbiol, vol.11, p.45, 2011.

P. Leger, E. Lara, and B. Jagla, Dicer-2-and Piwimediated RNA interference in Rift Valley fever virus-infected mosquito cells, J Virol, vol.87, pp.1631-1648, 2013.

P. Miesen, J. Joosten, and R. P. Van-rij, PIWIs Go viral: arbovirus-derived piRNAs in vector mosquitoes, PLoS Pathog, vol.12, p.1006017, 2016.

P. Miesen, A. Ivens, and A. H. Buck, Small RNA Profiling in dengue Virus 2-infected Aedes mosquito cells Reveals viral piRNAs and Novel host miRNAs

, PLoS Negl Trop Dis, vol.10, p.4452, 2016.

M. Petit, V. Mongelli, and L. Frangeul, piRNA pathway is not required for antiviral defense in Drosophila melanogaster, Proc Natl Acad Sci U S A, vol.113, pp.4218-4227, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01342499

C. D. Blair, Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission, Future Microbiol, vol.6, pp.265-277, 2011.

M. B. Kingsolver, Z. Huang, and R. W. Hardy, Insect antiviral innate immunity: pathways, effectors, and connections, J Mol Biol, vol.425, pp.4921-4936, 2013.

K. W. Van-cleef, J. T. Van-mierlo, and M. Van-den-beek, Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture, Methods Mol Biol, vol.721, pp.201-213, 2011.

A. Aswad and A. Katzourakis, Paleovirology and virally derived immunity, Trends Ecol Evol, vol.27, pp.627-636, 2012.

G. M. Taylor, Y. Gao, and D. A. Sanders, Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus, J Virol, vol.75, pp.11244-11248, 2001.

K. Fujino, M. Horie, and T. Honda, Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome, Proc Natl Acad Sci U S A, vol.111, pp.13175-13180, 2014.

M. Mura, P. Murcia, and M. Caporale, Late viral interference induced by transdominant Gag of an endogenous retrovirus, Proc Natl Acad Sci U S A, vol.101, pp.11117-11122, 2004.

S. Lequime and L. Lambrechts, Discovery of flavivirusderived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses, Virus Evol, vol.3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445705

K. Hanada, Y. Suzuki, and T. Gojobori, A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes, Mol Biol Evol, vol.21, pp.1074-1080, 2004.

S. Duffy, L. A. Shackelton, and E. C. Holmes, Rates of evolutionary change in viruses: patterns and determinants, Nat Rev Genet, vol.9, pp.267-276, 2008.

G. M. Jenkins, A. Rambaut, and O. G. Pybus, Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis, J Mol Evol, vol.54, pp.156-165, 2002.

R. Sanjuan, From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses, PLoS Pathog, vol.8, p.1002685, 2012.

S. Kumar and S. Subramanian, Mutation rates in mammalian genomes, Proc Natl Acad Sci, vol.99, pp.803-808, 2002.

M. Emerman and H. S. Malik, Paleovirology-modern consequences of ancient viruses, PLoS Biol, vol.8, p.1000301, 2010.

P. Aiewsakun and A. Katzourakis, Endogenous viruses: Connecting recent and ancient viral evolution

, Virology, pp.479-480, 2015.

J. O. Wertheim and M. Worobey, Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2, PLoS Comput Biol, vol.5, p.1000377, 2009.

R. J. Gifford, A. Katzourakis, and M. Tristem, A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution, Proc Natl Acad Sci U S A, vol.105, pp.20362-20367, 2008.

Y. Zhou and E. C. Holmes, Bayesian estimates of the evolutionary rate and age of hepatitis B virus, J Mol Evol, vol.65, pp.197-205, 2007.

E. Pischedda, F. Scolari, and F. Valerio, Evolutionary landscape of mosquito viral integrations, BioRxiv, 2018.

K. Hermanns, F. Zirkel, and A. Kopp, Discovery of a novel alphavirus related to Eilat virus, J Gen Virol, vol.98, pp.43-49, 2017.

F. Nasar, G. Palacios, and R. V. Gorchakov, Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication, Proc Natl Acad Sci U S A, vol.109, pp.14622-14627, 2012.

B. J. Blitvich and A. E. Firth, Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization, Viruses, vol.7, pp.1927-1959, 2015.