, World Health Organization. Dengue and severe dengue

S. B. Halstead, Dengue antibody-dependent enhancement: knowns and unknowns, Microbiol Spectr, vol.2, pp.1-18, 2014.

K. Stettler, M. Beltramello, and D. A. Espinosa, cross-reactivity, and function of antibodies elicited by Zika virus infection, Science, vol.353, pp.823-829, 2016.

N. M. Tuan, H. T. Nhan, N. Chau, N. T. Hung, and H. Manh, An evidence-based algorithm for early prognosis of severe dengue in the outpatient setting, Clin Infect Dis, vol.64, pp.656-63, 2017.

I. K. Lee, J. W. Liu, and Y. H. Chen, Development of a simple clinical risk score for early prediction of severe dengue in adult patients, PLoS One, vol.11, p.154772, 2016.

D. V. John, Y. S. Lin, and G. C. Perng, Biomarkers of severe dengue disease-a review, J Biomed Sci, vol.22, p.83, 2015.

R. Soundravally, B. Agieshkumar, M. Daisy, J. Sherin, and C. C. Cleetus, Ferritin levels predict severe dengue, Infection, vol.43, pp.13-22, 2015.

V. Thanachartwet, N. Oer-areemitr, and S. Chamnanchanunt, Identification of clinical factors associated with severe dengue among Thai adults: a prospective study, BMC Infect Dis, vol.15, p.420, 2015.

J. Pang, A. Lindblom, and T. Tolfvenstam, Discovery and validation of prognostic biomarker models to guide triage among adult dengue patients at early infection, PLoS One, vol.11, p.155993, 2016.

M. Kwissa, H. I. Nakaya, and N. Onlamoon, Dengue virus infection induces expansion that stimulates plasmablast differentiation, Cell Host Microbe, vol.16, pp.115-142, 2014.

S. Devignot, C. Sapet, and V. Duong, Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue, PLoS One, vol.5, p.11671, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595911

S. J. Popper, A. Gordon, M. Liu, A. Balmaseda, E. Harris et al., Temporal dynamics of the transcriptional response to dengue virus infection in Nicaraguan children, PLoS Negl Trop Dis, vol.6, p.1966, 2012.

L. T. Hoang, D. J. Lynn, and M. Henn, The early whole-blood transcriptional signature of dengue virus and features associated with progression to dengue shock syndrome in Vietnamese children and young adults, J Virol, vol.84, pp.12982-94, 2010.

C. P. Simmons, S. Popper, and C. Dolocek, Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever, J Infect Dis, vol.195, pp.1097-107, 2007.

V. Duong, L. Lambrechts, and R. E. Paul, Asymptomatic humans transmit dengue virus to mosquitoes, Proc Natl Acad Sci U S A, vol.112, pp.14688-93, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01239113

, Dengue: guidelines for diagnosis, treatment, prevention and control, World Health Organization, 2009.

Q. F. Stout, Isotonic regression via partitioning, Algorithmica, vol.66, pp.93-112, 2013.

, Dengue haemorrhagic fever: diagnosis, treatment, prevention and control, World Health Organization, vol.40, pp.103-120

F. Pedregosa, G. Varoquaux, and A. Gramfort, Scikit-learn: machine learning in python, J Mach Learn Res, vol.12, pp.2825-2855, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00650905

D. M. Nhi, N. T. Huy, and K. Ohyama, A proteomic approach identifies candidate early biomarkers to predict severe dengue in children, PLoS Negl Trop Dis, vol.10, p.4435, 2016.

R. Elgueta, M. J. Benson, V. C. De-vries, A. Wasiuk, Y. Guo et al., Molecular mechanism and function of CD40/ CD40L engagement in the immune system, Immunol Rev, vol.229, pp.152-72, 2009.

M. Gandini, S. R. Reis, and A. Torrentes-carvalho, Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-? and IFN-? profiles, Mem Inst Oswaldo Cruz, vol.106, pp.594-605, 2011.

E. Simon-lorière, V. Duong, and A. Tawfik, Increased adaptive immune responses and proper feedback regulation protect against clinical dengue, Sci Transl Med, vol.9, p.5088, 2017.

P. Sun, C. M. Celluzzi, and M. Marovich, CD40 ligand enhances dengue viral infection of dendritic cells: a possible mechanism for T cell-mediated, J Immunol, vol.177, pp.6497-503, 2016.

L. E. Yauch, T. R. Prestwood, and M. M. May, CD4+ T cells are not required for the induction of dengue virus-specific CD8 + T cell or antibody responses but contribute to protection after vaccination, J Immunol, vol.185, pp.5405-5421, 2010.

M. Munder, F. Mollinedo, and J. Calafat, Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity, Immunobiology, vol.105, pp.2549-56, 2005.

W. Ratajczak-wrona, E. Jablonska, M. Garley, J. Jablonski, P. Radziwon et al., Role of AP-1 family proteins in regulation of inducible nitric oxide synthase (iNOS) in human neutrophils, J Immunotoxicol, vol.10, pp.32-41, 2013.

M. F. Fontana, A. Baccarella, N. Pancholi, M. A. Pufall, D. R. Herbert et al., JUNB is a key transcriptional modulator of macrophage activation, J Immunol, vol.194, pp.177-86, 2015.

K. S. Burrack and T. E. Morrison, The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases, Front Immunol, vol.5, p.428, 2014.

N. Islam, M. K. Masud, and H. Haque, RNA biomarkers: diagnostic and prognostic potentials and recent developments of electrochemical biosensors, Small Methods, vol.1, p.1700131, 2017.

F. Edfors, F. Danielsson, and B. M. Hallström, Gene-specific correlation of RNA and protein levels in human cells and tissues, Mol Syst Biol, vol.12, p.883, 2016.