C. A. Balinsky, H. Schmeisser, S. Ganesan, K. Singh, T. C. Pierson et al., Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles, J Virol, vol.87, issue.24, pp.13094-106, 2013.

J. E. Brunetti, L. A. Scolaro, and V. Castilla, The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junin virus multiplication, Virus Res, vol.203, pp.84-91, 2015.

M. Cervantes-salazar, A. H. Angel-ambrocio, R. Soto-acosta, P. Bautista-carbajal, A. M. Hurtado-monzon et al., Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells, Virology, vol.484, pp.113-139, 2015.

C. R. Reid, A. M. Airo, and T. C. Hobman, The virus-host interplay: biogenesis of + RNA replication complexes, Viruses, vol.7, issue.8, pp.4385-413, 2015.

D. Mairiang, H. Zhang, A. Sodja, T. Murali, P. Suriyaphol et al., Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito, PLoS ONE, vol.8, issue.1, 2013.

E. M. Silva, J. N. Conde, D. Allonso, M. L. Nogueira, and R. Mohana-borges, Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner, PLoS ONE, vol.8, issue.3, p.57514, 2013.

L. Breton, M. Meyniel-schicklin, L. Deloire, A. Coutard, and B. ,

X. Lamballerie, Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen, BMC Microbiol, vol.11, p.234, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00703154

L. N. Carpp, R. S. Rogers, R. L. Moritz, and J. D. Aitchison, Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi brefeldin A resistance factor 1 (GBF1) in dengue infection, Mol Cell Proteomics, vol.13, issue.11, pp.2836-54, 2014.

C. S. Teo and J. J. Chu, Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein, J Virol, vol.88, issue.4, pp.1897-913, 2014.

D. Bhattacharya, I. H. Ansari, and R. Striker, The flaviviral methyltransferase is a substrate of Casein Kinase 1, Virus Res, vol.141, issue.1, 2009.

J. K. Forwood, A. Brooks, L. J. Briggs, C. Y. Xiao, D. A. Jans et al., The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site, Biochem Biophys Res Commun, vol.257, issue.3, pp.731-738, 1999.

M. Kapoor, L. Zhang, M. Ramachandra, J. Kusukawa, K. E. Ebner et al., Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5, J Biol Chem, vol.270, issue.32, pp.19100-19106, 1995.

M. Laurent-rolle, E. F. Boer, K. J. Lubick, J. B. Wolfinbarger, A. B. Carmody et al., The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling, J Virol, vol.84, issue.7, pp.3503-3518, 2010.

K. E. Reed, A. E. Gorbalenya, and C. M. Rice, The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases, J Virol, vol.72, issue.7, pp.6199-206, 1998.

Y. Zhou, D. Ray, Y. Zhao, H. Dong, S. Ren et al., Structure and function of flavivirus NS5 methyltransferase, J Virol, vol.81, issue.8, pp.3891-903, 2007.

H. Malet, N. Masse, B. Selisko, J. L. Romette, K. Alvarez et al., The flavivirus polymerase as a target for drug discovery, Antivir Res, vol.80, issue.1, pp.23-35, 2008.

D. Bhattacharya, . Mayuri, S. M. Best, R. Perera, R. J. Kuhn et al., Protein kinase G phosphorylates mosquito-borne flavivirus NS5, J Virol, vol.83, issue.18, pp.9195-205, 2009.

J. C. Obenauer, L. C. Cantley, and M. B. Yaffe, Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs, Nucleic Acids Res, vol.31, issue.13, pp.3635-3676, 2003.

N. Blom, S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites, J Mol Biol, vol.294, issue.5, pp.1351-62, 1999.

Y. H. Wong, T. Y. Lee, H. K. Liang, C. M. Huang, T. Y. Wang et al., KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns, Nucleic Acids Res, vol.35, pp.588-94, 2007.

J. A. Keating, D. Bhattacharya, P. Y. Lim, S. Falk, B. Weisblum et al., West Nile virus methyltransferase domain interacts with protein kinase G, Virol J, vol.10, p.242, 2013.

D. Edgil, M. S. Diamond, K. L. Holden, S. M. Paranjape, and E. Harris, Translation efficiency determines differences in cellular infection among dengue virus type 2 strains, Virology, vol.317, issue.2, pp.275-90, 2003.

G. Neveu, P. Cassonnet, P. O. Vidalain, C. Rolloy, J. Mendoza et al., Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase, Methods, vol.58, issue.4, pp.349-59, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01971543

D. Bhattacharya, S. Hoover, S. P. Falk, B. Weisblum, M. Vestling et al., Phosphorylation of yellow fever virus NS5 alters methyltransferase activity, Virology, vol.380, issue.2, pp.276-84, 2008.

Y. J. Kwon, J. Heo, H. E. Wong, D. J. Cruz, S. Velumani et al., Kinome siRNA screen identifies novel cell-type specific dengue host target genes, Antivir Res, vol.110, pp.20-30, 2014.

C. C. Kao, P. Singh, and D. J. Ecker, De novo initiation of viral RNA-dependent RNA synthesis, Virology, vol.287, issue.2, pp.251-60, 2001.

K. Jorgensen, M. Skrede, V. Cruciani, S. O. Mikalsen, A. Slipicevic et al., Phorbol ester phorbol-12-myristate-13-acetate promotes anchorageindependent growth and survival of melanomas through MEK-independent activation of ERK1/2, Biochem Biophys Res Commun, vol.329, issue.1, pp.266-74, 2005.

R. D. Whelan and P. J. Parker, Loss of protein kinase C function induces an apoptotic response, Oncogene, vol.16, issue.15, pp.1939-1983, 1998.

R. Mandil, E. Ashkenazi, M. Blass, I. Kronfeld, G. Kazimirsky et al., Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells, Cancer Res, vol.61, issue.11, pp.4612-4621, 2001.

A. A. Matassa, R. L. Kalkofen, L. Carpenter, T. J. Biden, and M. E. Reyland, Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells, Cell Death Differ, vol.10, issue.3, pp.269-77, 2003.

M. L. Garcia-bermejo, F. C. Leskow, T. Fujii, Q. Wang, P. M. Blumberg et al., Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate cancer cells by selective activation of PKCalpha, J Biol Chem, vol.277, issue.1, pp.645-55, 2002.

M. Kamkaew and S. Chimnaronk, Characterization of soluble RNA-dependent RNA polymerase from dengue virus serotype 2: The polyhistidine tag compromises the polymerase activity, Protein Expr Purif, vol.112, pp.43-52, 2015.

R. M. Kinney, S. Butrapet, G. J. Chang, K. R. Tsuchiya, J. T. Roehrig et al., Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53, Virology, vol.230, issue.2, pp.300-308, 1997.

T. Poyomtip, K. Hodge, P. Matangkasombut, A. Sakuntabhai, T. Pisitkun et al., Development of viable TAP-tagged dengue virus for inverstigation of host-virus interaction in viral replication, J Gen Virol, 2015.

S. B. Halstead, S. Udomsakdi, P. Simasthien, P. Singharaj, P. Sukhavachana et al., Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses, Yale J Biol Med, vol.42, issue.5, pp.261-75, 1970.