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Abstract

The genetic information that instructs transcription and other cellular
functions is carried by the chromosomes, polymers of DNA in complex
with histones and other proteins. These polymers are folded in nuclei
�ve orders of magnitude smaller than their linear length, and many
facets of this folding correlate with or are causally related to transcrip-
tion and other cellular functions. Recent advances in sequencing and
imaging based techniques have enabled new views into several layers of
chromatin organization. These experimental �ndings are accompanied
by computational modeling e�orts based on polymer physics which can
provide mechanistic insights and quantitative predictions. Here, we re-
view current knowledge of the main levels of chromatin organization,
from the scale of nucleosomes to the entire nucleus, our current un-
derstanding of their underlying biophysical and molecular mechanisms,
and some of their functional implications.
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1. INTRODUCTION
Eukaryotic genomes, and in particular mammalian genomes are under considerable con-
straints. The DNA double helix has a diameter of �2 nm and, in human cells, would
measure �2 m long if stretched out, but is folded in a nucleus of �10 �m diameter, thus
involving roughly �ve orders of magnitude of spatial lengths. Despite this tight folding, the
genome needs to remain permissible to key biological processes, including DNA replication
and gene expression. How genome architecture and biological processes intertwine has puz-
zled generations of biologists, and a more comprehensive picture of the key determinants
of these interactions is just starting to be unravelled. Over the last decade, the �eld has
undergone a dramatic acceleration thanks to the development of powerful sequencing-based
assays and microscopy techniques, which have revealed previously unknown levels of chro-
matin organization. Together with polymer based modeling, these data have helped to
uncover some of the fundamental mechanisms that shape chromatin organization. In the
following, we �rst review simple concepts from polymer physics relevant to DNA and chro-
matin, then discuss four levels of genome organization, from the scale of nucleosomes to the
entire nucleus, and highlight proposed biophysical mechanisms and functional consequences.

2. DNA AND CHROMATIN AS POLYMERS
The DNA double helix in a typical human chromosome consists of hundreds of millions of
base pairs covalently chained together by sugar-phosphate backbones. Thus, DNA perfectly
�ts the de�nition of a polymer, as a molecule built from a large number of similar elements
(called monomers) bonded together. Polymers obey a wide range of properties that arise
solely from the fact that they consist of a large number of monomers and are largely in-
dependent of their precise chemical nature. This universality means that many concepts
and results from polymer theory (33, 105) can be applied to understand the structure and
dynamics of DNA and chromatin in cells - we briey recall some of them next.

Persistence length:
measures the rigidity
of a polymer
(Figure 1a); can be
de�ned
geometrically as the
length over which
tangent vectors
remain correlated to
each other.

A key property of polymers is semi-exibility: on short length scales, a polymer behaves
as a rigid rod, while on larger scales it can bend in arbitrary directions due to thermal agi-
tation alone (Figure 1a). The length scale that separates rigid from exible behaviour is
called ‘persistence length’. As a consequence of this semi-exibility, polymers can adopt an
in�nite number of 3D arrangements, or conformations. Individual conformations cannot be
predicted, much like the positions of individual molecules in a gas cannot be predicted. How-
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Figure 1
Basic properties of polymers. a) A polymer is a semi-exible structure whose rigidity can be
de�ned by the bending persistence length lp. The average cosine of �, the angle between the
tangent vectors at two loci separated by a curvilinear distance s, decreases as exp(�s=lp). b) The

root mean squared end-to-end distance,


R2

�1=2
, as function of the number of monomers N , for

an ideal chain (red), a real chain (blue), and a chain in con�nement (dashed black). c) The
contact probability Pc(s) as function of curvilinear distance s between loci for an equilibrated
polymer (red), a fractal (or crumpled) globule (blue) (53), a con�ned polymer (dashed black). d)
Schematic showing the dynamics of a Rouse polymer where monomers are connected by harmonic
springs (105). e) Mean square displacement (MSD)



r2(t)

�
as function of time for a freely

di�using monomer (red) and a monomer embedded in a polymer chain undergoing Rouse
subdi�usion (green). f) Snapshot of a molecular dynamics simulation of multiple chromosomes in
the nucleus (J. Parmar, unpublished).

ever, polymer theory can predict statistical quantities, such as the mean distance between
the two ends of a polymer chain (Figure 1b) or the frequency with which two monomers
contact each other (Figure 1c). These quantities are predicted to obey scaling laws, which
describe how they vary with the number of monomers N , or equivalently the contour length
s of the chain. In the simplest model, the ideal chain, bonds between monomers have

Contour length: the
distance between
two points on a
polymer as measured
when walking along
the chain; can be
much larger than the
Euclidian distance
between these
points.

random orientations and monomers ignore each other (i.e. neither repel nor attract each
other)(105). At equilibrium, in absence of any external constraints or forces, the root mean
square end-to-end distance increases as

p
s (Figure 1b, red), while the contact frequency

decays like s�3=2 (Figure 1c, red). The more realistic ‘real chain’ model accounts for the
fact that a polymer cannot self-intersect. This constraint leads to a swelling of the chain
and a faster scaling of end-to-end distances (Figure 1b, blue). In a con�ned and crowded
volume such as the nucleus, however, this swelling can be counterbalanced by the presence
of other chains (and other segments of the same chain). In that case, the scaling laws be-
come similar to the ideal chain up to a distance where monomers behave as if they were no
longer part of the same chain, at which point they level o� (Figure 1b,c, black dashed).

Equilibrium
(thermodynamic):
State of lowest free
energy, where there
is no net force acting
on the system and
statistical quantities
such as temperature
or pressure remain
constant.

Theory can also predict properties of polymer motions. The simplest model, the Rouse
model, describes how the random motion of a single monomer is inuenced by that of other
monomers to which it is connected (Figure 1d). According to this model, the mean square
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displacement (MSD) of a monomer grows like the square root of time over short time scales
(105, 104), unlike a free particle, for which the MSD is simply proportional to time.

These predictions are based on a number of important assumptions, especially equilib-
rium and a polymer consisting of identical monomers (homopolymer). Neither of these two
assumptions holds true for DNA and chromatin �bers, which are subject to ATP-consuming
(i.e. energy-driven) processes such as transcription and replication, and have a non-uniform
composition determined by the DNA sequence and epigenetic histone modi�cations. One

Histone
modi�cations:
Addition of small
molecules (e.g.,
acetyl, methyl or
phosphate groups)
to di�erent histones
at di�erent amino
acid positions. might therefore expect the above relationships to utterly fail when applied to chromatin

�bers in real biological nuclei. Perhaps surprisingly, however, basic homopolymer physics
has proven quite e�ective at explaining some key features of nuclear architecture in a num-
ber of organisms (104). Discrepancies between predictions of basic polymer models and
observations are useful, because they hint at additional mechanisms of potential biological
signi�cance and motivate the development of more realistic and complex models. Exam-
ples are heteropolymer simulations, where monomers have distinct types and are subject
to di�erent interactions (Figure 1f) de�ned by DNA sequence or epigenetic information,
some of which will be discussed in subsequent sections (104, 46, 11, 107).

3. NUCLEOSOMES AND CHROMATIN FIBER STRUCTURE
Beads-on-a-string
The DNA double helix contains approximately 3 base pairs (bp) per nanometer length and
has a persistence length of � 50 nm, i.e. 150 bp, as estimated from in vitro experiments
(125). According to the ideal chain model (Figure 1b), an average human chromosome
would then have an average size exceeding 50 �m, much larger than typical nuclei. The
�rst level of genome packaging is achieved thanks to nucleosomes, histone octamers whose
shape can be approximated by a short cylinder of 10 nm diameter and 5 nm height. Despite
the sti�ness of DNA at this scale, 147 bp of DNA wrap around each nucleosome, taking 1.7
turns. This interaction occurs because the positively charged histones are attracted to the
negatively charged DNA, resulting in a net free energy gain of � 40 kBT (71, 130). Nucle-
osomes are spaced by 20-40 bp of linker DNA, such that a stretched array of nucleosomes
appears as ‘beads-on-a-string’ in electron micrographs (Figure 3a). Nucleosomes are dy-
namic and can be repositioned by ATP-dependent chromatin remodelers (132, 79). Several
equilibrium and non-equilibrium models, with (un)binding and sliding kinetics, have been
successful at explaining the positioning and dynamics of nucleosomal arrays (Figure 3a,
blue box)(63, 88, 89).

The elusive chromatin �ber structure
How are nucleosomes arranged with respect to each other in 3D? Early in vitro transmission
electron microscopy and X-ray experiments suggested that the beads-on-a-string �ber would
fold in a higher-order chromatin �ber of �30 nm diameter in which nucleosomes are tightly
packed together (41, 7, 124, 51, 34, 109, 102, 64, 112). This structure was thought to arise
from the supercoiling of regularly spaced nucleosomes and stabilized by linker histone and
electrostatic interactions between the histone tails (102), resulting in DNA compactions far
exceeding 100 bp/nm. However, this characteristic structure has not been con�rmed in
vivo (99, 47, 57), and more generally, the intermediate folding of chromatin remains elusive.
Recent 3D high resolution EM data of speci�cally labeled chromatin (87) revealed a complex
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Figure 2
Techniques to study chromatin organization fall in three main categories: genomics, imaging and
modeling. Genomics: a) In Hi-C (68), di�erent chromatin regions that are in close spatial
proximity are crosslinked, fragmented, ligated and marked with adapters (pink). Fragments are
then reverse crosslinked, puri�ed, sequenced and mapped to their genomic locations, yielding
genome-wide contact frequency matrices. b) In GAM, nuclei are cryo-sectioned into thin slices
and their DNA is sequenced (8). Analysis of locus cooccurrence in many sections allows to infer
their proximity, including multi-way interactions, without requiring ligation. c) In SPRITE, DNA
and RNA fragments are barcoded in a sequential manner that allows to detect both DNA-DNA
and DNA-RNA associations by sequencing (94). d) In Dam-ID, chromatin regions close to the
nuclear lamina are marked by the Dam methyl transferase and are mapped genome-wide by
sequencing (54). Imaging: e) DNA-FISH methods allow to visualize targeted chromatin domains
or entire chromosomes in single cells (16, 9, 123). f) Electron microscopy, in combination with
DNA-speci�c labeling, can reveal nanometer-scale 3D chromatin structures in frozen samples (87).
Modeling: g) Molecular dynamics simulations can model time-dependent changes in chromosome
con�gurations by computing the displacement of monomers based on internal and external forces
(103, 104, 6). Such models can predict contact frequencies and average locus positions from a
relatively small number of assumptions. h) Inverse modeling approaches typically use Hi-C data
to reconstruct a population of 3D structures consistent with the data (61, 104).

and irregular folding of the DNA, without 30 nm �ber but with various diameters, ranging
from 5 nm to 24 nm. Recent uorescence superresolution imaging data are also consistent
with the absence of 30 nm �bers and a polymorphic structure (101, 85).

Modeling studies can also provide information about the chromatin �ber structure and
estimates of its compaction and rigidity based on contact frequency measurements from
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Hi-C techniques or its ancestors (30) and distances between loci from imaging. In yeast, an
analysis using a whole nucleus simulation inferred an average compaction of 53-65 bp/nm
-also arguing against a 30 nm �ber- and a persistence length of 52-85nm, i.e. �3-6 kb (6).
Based on these numbers, the ideal chain model would predict a human chromosomes size
of �15 �m. This is much larger than the actual size of chromosomes, calling for other
explanations, as will be discussed in section 6.

Hi-C: A genomic
technique that maps
the contact
frequency of any two
DNA fragments
su�ciently close in
space to be captured
by crosslinking
(Figure 2a).

4. TOPOLOGICALLY ASSOCIATED DOMAINS AND LOOPS
TADs, subTADs, loops and stripes

TAD (Topologically
Associated Domain):
Chromatin region of
40kb� 3Mb size
appearing along the
diagonal of Hi-C
maps as regions of
enriched
intrachromosomal
contacts (Figure
3d, Figure 4a).

While electron and light microscopy have allowed insights into the structure of chro-
matin and chromosomes at small (nucleosome-level) and large (nuclear) scales (see section
6), intermediate scales of chromatin folding have long remained obscure. A major milestone
enabled by Hi-C was the discovery that intrachromosomal contact frequency matrices dis-
play squared blocks of higher frequencies along the diagonal, reecting regions within which
contacts occur more frequently than with any other parts of the genome, and where the
average contact frequencies decay slower than the genome-wide average (32, 84) (Figure
3b, Figure 4a, Figure 5). These domains were called ‘topologically associated domains’
(TADs) (although in this context ‘topological’ does not carry its physical meaning). Al-
though dependent on the exact de�nition, the number of TADs in human cells has been
reported as �10,000, with a median size of �200 kb (98). While TADs were �rst character-
ized in population-averaged Hi-C maps, later imaging experiments support their presence
as physical units in single nuclei (114). Another prominent feature uncovered by Hi-C are
chromatin loops, identi�ed as peaks in the contact maps (Figure 4b). A large fraction
of TADs have such peaks at their corners and conversely, a large proportion of loops are
associated to TADs (98). With su�cient sequencing coverage, smaller TADs can be found
nested within bigger ones, and these ‘sub-TADs’ tend to share common contact peaks. In
addition, a large portion of TADs feature \stripes" at their edges, indicating that contacts
between a locus at the boundary and all other loci within the TAD are more frequent than
between random pairs of loci within the TAD (Figure 4c) (121).

Loop: two distant
loci of the same
chromosome are
maintained in close
proximity, at least
transiently, by other
molecules. Identi�ed
as peaks in the Hi-C
map (Figure 3d,
Figure 4b).

Stripe/ame: Line
of high contact
frequency along a
TAD border, arising
when a locus is in
contact with the
entire TAD region
(Figure 4c).

Loop extrusion
What mechanism can explain the formation of loops, TADs and stripes ? Arguably the
simplest scenario is that contacts between distant sites �rst occur because of random col-
lisions between monomers in a polymer undergoing thermal uctuations. Most of these
random contacts will be short-lived; however if two colliding loci are bound by molecular
factors that can form longer lived interactions, these will stabilize contacts and create local
peaks in the Hi-C matrix. Indeed, the boundaries of TADs are strongly enriched in speci�c
proteins, most notably the insulator protein CTCF and cohesin (98). However, the ran-
dom collision model should also generate contact enrichments with other domains on the
same chromosome, and even with other chromosomes, leading to o�-diagonal blocks in the
contact maps - a prediction that is not borne out by Hi-C data. This model also fails to
explain another key observation, namely that the boundaries of TADs correlate strongly
with converging CTCF sites, i.e. motifs oriented towards each other, while the three other
possible orientations of these motifs are strongly disfavored (98). Finally, how TADs with
only one stripe can arise in this scenario is similarly unclear.

Cohesin: A ring-like
complex previously
known for its role in
holding the two
sister chromatids
together after
replication (80).
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Figure 3
Di�erent levels and mechanisms of chromatin organization. This �gure highlights distinct features
of 3D genome architecture and some proposed explanations for their formation (boxes).
a) Chromatin �ber: Wrapping of DNA around nucleosomes results in the �10 nm
beads-on-a-string �ber. The positioning of nucleosomes is determined by energetic barriers
(green), steric hindrance by other nucleosomes, and by ATP-dependent chromatin remodelers that
can assemble, disassemble or slide nucleosomes (box) (88, 89, 24). The compaction of nucleosomes
in the chromatin �ber is a�ected by posttranslational modi�cations of histone tails such as
methylation (’me’) or acetylation (’ac’). b) TADs and loops: TADs appear as blocks of higher
contact frequency on the Hi-C map diagonal. Loops show up as peaks, often located at TAD
corners. The box shows chromatin regions undergoing cohesin-mediated loop extrusion (44). In
this scenario, cohesin is loaded on DNA by Nipbl, and once loaded extrudes DNA until reaching a
properly oriented CTCF boundary. Cohesin can be released from the chromatin by WAPL and
PDS5A/B factors. c) Compartments and LADs: euchromatin (A, green), facultative
heterochromatin (B, red) and constitutive heterochromatin (C, blue) compartments segregate
radially in the nucleus, as seen by microscopy and the checkerboard pattern of Hi-C maps. LADs
strongly correlate with B compartments. In ‘inverted nuclei’ (111), the radial organization is
reversed, but the contact pattern remains similar. Both can be explained by a heteropolymer
model that involves attractions between heterochromatic regions, and additional lamina-dependent
interactions with the nuclear envelope to model conventional nuclei (box) (38) d) Nuclear bodies,
including speckles and nucleoli form membrane-less compartments in the nucleus that appear
driven by liquid-liquid phase separation (133). e) Chromosome territories: distinct chromosomes
(shown in color) take separate, non-overlapping positions in the nucleus, with the more
transcriptionally active chromosomes preferentially occupying the nuclear center (27). Hi-C maps
shows high intrachromosomal and low interchromosomal contact frequencies. One proposed
mechanism of chromosome territory formation (box) assumes activity-dependent dynamics (red
beads: gene rich regions, more dynamic; purple beads: gene poor regions, less dynamic) (48).

By contrast, all of these observations can be simultaneously recapitulated by a very
di�erent mechanism known as loop extrusion (80, 4, 98, 106, 45, 86) (Figure 3b and Figure
4). According to this model, cohesin rings land on chromatin and actively pull out (extrude)
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the DNA, until they fall o� or encounter obstacles such as CTCF bound sites (with the right
orientation) or other cohesin complexes. Molecular dynamics simulations of loop extrusion
(106, 45, 86, 121), although assuming some ad-hoc parameters (e.g. an average processivity
of �200 kb, a 10% permeability of CTCF boundaries and uni-directional or bidirectional
movements) are remarkably successful at explaining almost all the experimental evidence
mentioned above, as well as the e�ect of several experimental perturbations summarized
next (44).

Molecular and energetic determinants of TADs
Several lines of evidence directly or indirectly support the loop extrusion model and indicate
the role of key molecular determinants of TAD formation. Induced degradation of the
cohesin subunit Rad21 leads to complete disappearance of TADs in less than 40 minutes,
but restoration of cohesin recovers TADs within 15-40 mins, demonstrating the crucial role
of cohesin in TAD formation (97, 128) (Figure 5a). Deletion of Nipbl, a protein that loads
cohesin on the DNA, results in similar e�ects (110) (Figure 5c), implying that cohesin must
be loaded repeatedly on chromatin to maintain TADs. While � 90% of cohesin binding sites
coincide with CTCF sites, only 29% coincide with Nipbl sites and only � 11% of CTCF
sites coincide with Nipbl sites indicating that cohesin is loaded outside of CTCF sites and,
once loaded, translocates very fast from the loading site to CTCF sites (134, 19, 121).

Conversely, deletion of WAPL and/or PDS5A and PDS5B, proteins that cooperate to
releases cohesin from the DNA, yields an enlargement of TADs by more than 200 kb and
a proliferation of loops (Figure 5d) (128, 55). In absence of WAPL, cohesin can travel
far distances, even bypass CTCF, resulting in a loss of interphase chromatin organization
and characterized by condensed mitotic-like chromatin referred to as "vermicelli" (115, 128,
19, 55) (Figure 5d). These observations suggest that turnover of cohesin is necessary for
proper chromatin organization during interphase, and that if left on chromatin, cohesin
keeps extruding longer lengths of DNA resulting in very condensed chromosomes.

The degradation of CTCF protein does not remove TADs but makes their boundaries
fuzzier, in accordance with the above idea that CTCF is not directly involved in TAD
formation but in de�ning the boundaries (Figure 5b). Disruption or ipping of CTCF
binding sites by genome editing results in changes of TAD boundaries (84), e.g. fusion of
consecutive TADs, in excellent agreement with simulation predictions (106). Moreover,
disruption of CTCF (in mouse) results in several new cohesin peaks at the active transcrip-
tion sites (19), suggesting that absence of CTCF allows cohesin to travel longer distances
until it �nds another roadblock, which in this case could be active transcription. How
CTCF or active transcription sites block cohesin is still an open question.

While some models assume that extrusion relies on an energy-driven activity of cohesin
as a molecular motor (45, 106) others propose extrusion without such activity, powered
by either transcriptionally induced supercoiling or even mere thermal di�usion (95, 92).
Experimentally depleting the cells of ATP shifts the genome-wide distribution of cohesin
away from CTCF sites and towards Nipbl binding sites, and prevents the reformation of
TADs when restoring cohesin levels after induced degradation. These experiments support
an energetic requirement for cohesin translocation from the loading sites and for TAD
formation (121).

Further independent evidence in favor of the extrusion model comes from in vitro single
molecule imaging experiments showing that the human cohesin complex can translocate on
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DNA and bypass single nucleosomes and DNA bound proteins, but not CTCF (29). How-
ever in this study translocation was independent of ATP, whereas in yeast cohesin loading
is ATP-dependent (76, 75, 74). Another recent single molecule experiment with the re-
lated yeast condensin complex showed fast, unidirectional, ATP-dependent loop extrusion
(� 1500 bp/s, step size � 50 nm) on linear DNA (49). The dynamic nature of loops is also
supported by single molecule tracking of cohesin and CTCF in vivo (56). Further experi-
mental studies are required to de�nitively establish active loop extrusion as the mechanism
of TAD formation.

Finally, we note that although the role of cohesin in TAD formation is supported by
many Hi-C experiments, a recent imaging study showed that even in the absence of cohesin,
TAD-like structures remain present in single cells, although their boundaries become ran-
domized along the genome and no longer preferentially associate with CTCF sites (12) .
Moreover, the TAD-like domains were reestablished after mitosis in the absence of cohesin.
These new results question the role of cohesin in de�ning chromatin domains in single cells
and calls for more investigations.

Stripe

Chromatin                 Cohesin complex             Oriented CTCF site          CTCF protein

(c)

Loop

(b)

TAD

(a)

Figure 4
Loop extrusion scenarii and resulting contact maps. Multiple conformations of the same
chromatin region in di�erent cells are shown on the left, the resulting population averaged contact
frequency map (i.e. the expected Hi-C map) is shown on the right. a) TAD formation: loops
extruded bidirectionally by cohesin landing at random positions generate an enrichment of
contacts within a domain (de�ned by converging CTCF sites) as reected by a square on the main
diagonal of the contact map. b) Loop extrusion stops at converging CTCF sites, giving rise to a
contact frequency peak at the TAD corner. c) cohesin landing near a CTCF site and extruding
chromatin unidirectionally yields a stripe at the TAD boundary.

Functional role of TADs
A key property of TADs is their high degree of conservation between cell types and species
(32, 98). In line with this, TADs and loop extrusion are thought to be both associated and
crucial to several biological processes.

Transcription In terms of gene expression, TADs can be seen as highly functional units:
genes within the same TAD tend to be coregulated (131) and loops correlate with enhancer-
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promoter interactions (98). Alterations of TADs can lead to abnormal expression patterns.
Enhancer: A
non-coding region of
DNA that can exert
regulatory control
on nearby or distant
gene promoters by
bringing
transcription factors
in contact with the
transcription
pre-initiation
machinery

For instance, disruption of a single TAD boundary was su�cient to induce polydactyly, a
severe development malformation, in mice (70). This e�ect was explained by the induc-
tion of contacts between an enhancer and the promoter of a developmental gene that were
previously insulated from each other by the TAD boundary. Similarly, it was shown that
loss of CTCF at a TAD boundary in patient-derived cells leads to aberrant contacts of
a constitutive enhancer with an oncogene and hyperactivation of its expression, resulting
in increased cell proliferation (42). Such evidence underlies the view that TADs provide
a means to constrain the action of enhancers to a small number of promoters. However,
this immediately raises the question as to how the relatively moderate contact insulation
a�orded by TADs (contacts within TADs are on average only 2-3 times more frequent
than across TADs (73)) can explain the fact that gene expression essentially follows an
all-or-nothing behaviour depending on whether both an active enhancer and a promoter
reside in the same TAD (70, 42). One possible solution to this conundrum might be the
uni-directional extrusion mentioned above to explain contact stripes (121) (Figure 4c). If
one of the loop anchors is �xed at a promoter, DNA extrusion can bring this locus in con-
tact sequentially with the entire TAD domain, including all potential enhancer sequences,
without having to rely on random 3D collisions. This process might greatly increase the
frequency of interactions between pairs of enhancers and promoters sharing a TAD (and a
stripe) compared to pairs that do not.

Another potential answer might come from the time scales of promoter activation by
enhancer interactions. In the traditional view of mammalian gene expression, a physical
contact between the enhancer sequence bound by activating transcription factors and the
transcription pre-initiation complex is required to initiate transcription, and many lines of
evidence support this model (31). However, it is unclear whether this physical contact is
actually required for the RNA polymerase to initiate transcription, or whether it simply
potentiates the polymerase, enabling it to initiate transcription later, even in absence of
enhancer-promoter contact. In Drosophila, enhancer-promoter contacts and transcription
seem to be highly synchronized and more generally, FISH experiments clearly demonstrate
a lower enhancer-promoter distance in active genes than in inactive genes, arguing for a
direct link between contacts and transcription (69, 21). On the other hand, both cohesin
and CTCF depletion only show minor e�ects on gene expression over a 6 hour window,
suggesting that on a population scale, transcription is already potentiated and proceeds as
before, even in the absence of TAD delimitation (83, 97). These �ndings are corroborated
by recent single locus imaging in mouse embryonic stem cells, in which no correlation was
found between enhancer-promoter distance and transcript production (3). It also remains
unclear to what extent speci�c histone modi�cations could mediate this potentiation.

While there is evidence of a role of TADs in regulating transcription, there is also
evidence for a reverse role of transcription in TAD organization, such as the fact that a
large portion of TAD boundaries is enriched in active RNA polymerase instead of CTCF,
and that in Drosophila, TADs are much better de�ned by active histone marks than by
CTCF (119). In general however, the interplay between TADs, loops and transcriptional
activation is far from being understood and remains to be further elucidated.

Heterochromatin:
initially identi�ed as
electron dense
chromatin regions by
electron microscopy.
Subdivided into
constitutive
heterochromatin
(never transcribed)
and facultative
heterochromatin
(reversibly silenced
genes).

Euchromatin:
initially discovered
by electron
microscopy as less
electron-dense
chromatin regions in
the nucleus.
Contains most of the
active genes.

Replication In order to enable the replication of the entire human genome in a few tens of
minutes, DNA polymerases initiate replication in parallel at several points along chromo-
somes, leading to ‘replication domains’ that grow and merge until the entire chromosome
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Figure 5
Molecular determinants of chromatin domains. This �gure shows the e�ect of depleting or
deleting individual architectural proteins on Hi-C contact maps at the scale of TADs and
compartments, and on microscopy images of the cohesin component Rad21/Scc1. a) Depletion of
Scc1 removes TADs and strengthens compartments. Imaging shows no Scc1 signal when the
cohesin subunit SMC3 is deleted, indicating depletion of the cohesin complex. b) CTCF depletion
blurs TAD boundaries, but has no e�ect on compartments. Imaging shows no visible change of
Rad21. c) Degradation of the cohesin loader Nipbl has similar e�ects on TADs and compartments
as degradation of cohesin and leads to strongly decreased Rad21 signal . d) Degradation of
WAPL along with its cofactors PDS5A and PDS5B results in appearance of new loop peaks,
enlargement of TADs, and removal of compartment structures. Imaging of Rad21 shows
condensed chromatin structures similar to those seen during mitosis. Depletion of WAPL or the
two cofactors alone results in similar, but less pronounced, e�ects (not shown). Sources of Hi-C
data: a: HCT116 (human) (97); b,d: HeLa (human) (128); c: Hepatocytes (mouse) (110).
Visualization of contact maps was done with Juicebox (36). Source of microscopy images: a,b:
Embryonic �broblasts (mouse) (19); c: HAP1 cells (human) (55); d: HeLa (human) (128).

is replicated. Surprisingly, TADs coincide almost perfectly with replication domains (93),
suggesting that TADs might also orchestrate replication, in addition to transcription. This
colocalization of TADs and replication origins has recently been used in order to visualize
TAD dynamics in live cells (129). One recent study found that the progressive estab-
lishment of TADs in early zygote development was prevented by replication inhibition as
opposed to transcription inhibition (62), but another found that loop domains can reform
after restoration of cohesin despite inhibition of replication (121). Clearly, more work is
needed to address the mechanistic links between replication and TAD formation.
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5. CHROMATIN COMPARTMENTS
A and B compartments and LADs
Electron microscopy images of interphase nuclei typically show dense heterochromatic re-
gions near the nuclear envelope and around nucleoli, with less compact, euchromatin in the
center of the nucleus and beneath nuclear pores. A notable exception to this general

Compartments:
Megabase-scale
regions of the
genome, originally
evidenced by
checkerboard
patterns in Hi-C
maps, representing
domains of increased
interactions (Figure
3c).

rule are retinal cells of nocturnal mammals, which display an ‘inverted nuclear architecture’
where euchromatin relocates to the periphery while constitutive heterochromatin resides
at the nuclear center (111). New views into this partitioning of the genome were opened
by the identi�cation of chromatin ‘compartments’ in the �rst Hi-C study (68). Compart-
ments appear as a checkerboard pattern in the Hi-C map after correcting for the average
dependence of contact frequencies on genomic distance (the pattern becomes more appar-
ent when computing the corresponding correlation matrix) (68) (Figure 3c, Figure 5).
This pattern, and an eigenvector analysis, suggest that the entire genome is partitioned
to �rst order in alternating regions of a few megabases belonging to two compartments
(called A and B). (Subsequent Hi-C experiments with higher resolution further re�ned this
partitioning into six sub-compartments (98)). Unlike for TADs, a locus belonging to the A
compartment exhibits enriched contacts with other loci from the A compartment through-
out the genome, but has less frequent contacts with loci from the B compartment (and
vice-versa). Comparisons with ChIP-seq data shows a strong correlation of A regions with
transcriptionally active histone marks and decondensed chromatin, while B regions corre-
late with inactive histone marks and dense regions, thereby providing a new de�nition of
euchromatin and heterochromatin. Imaging experiment have later con�rmed the existence
of A and B compartments (as well as TADs) with di�erent levels of compaction in single
cells of Drosophila (123). The B compartment identi�ed by Hi-C also exhibits very high
correlation with ‘lamina associated domains’ (LADs), chromatin regions in contact with the
nuclear envelope, as identi�ed by the Dam-ID technique (54, 120) (Figure 2d).

ChIP-seq: An
immunoprecipitation
technique that
provides the
genomic locations of
where a protein of
interest binds.

Lamina-associated
domains (LADs):
Megabase-size
chromatin domains
that were shown to
physically interact
with the nuclear
lamina by Dam-ID
(Figure 2d).

Compartmentalization mechanisms
Although A and B compartments were identi�ed several years before TADs, our under-
standing of the mechanisms underlying their segregation is comparatively less advanced.
Most explanatory models derive from the observation that A and B compartments are en-
riched for speci�c histone modi�cations (68). These modi�ed histones can act as sca�olds
for other proteins capable of interacting with more than one histone, or proteins exhibit-
ing a high level of self-interaction, both of which can potentially mediate phase-separation
(37). Alternatively, it has been proposed that compartment segregation might result from
associations to (at least) two types of anchors: the nuclear lamina, which contains several
proteins known to interact with modi�ed histones and nuclear speckles, which are located
more centrally (see section 6) (22, 23, 120). Other proposed models invoke di�erences in
chromatin dynamics or transcriptional activity (48).

In recent studies (86, 38, 92), chromosomes were modeled as heteropolymers (Figure
3c) partitioned into three compartments based on the Hi-C maps (A, B, plus constitutive
heterochromatin, termed C). The simulations were able to recover the inverted nuclear
architecture mentioned above as well as the compartment organization by assigning realistic
interactions between the three compartments, e.g. an attractive energy potential of 0:5kBT
for interactions between B-compartment monomers of 30 kb. Keeping the same model, but
adding interactions of B and C monomers with the nuclear envelope allowed to recover the

12 Parmar et al.



conventional nuclear architecture. This suggests that the compartment segregation may be
explained by attractive interactions between heterochromatin regions rather than between
euchromatin regions and is unrelated to tethering at the nuclear lamina, and that the default
organization of chromatin (in absence of tethering with the lamina) is the inverted one (38).
Although the model does not specify the molecular nature of the assumed heterochromatic
interaction, one plausible candidate is heterochromatin protein 1-� (HP1�), which has
been shown to undergo phase-separation, both in vitro (66) and in vivo (113). Clearly,
more work is needed to expand on such early results and fully address the molecular and
physical mechanisms that underly chromatin compartmentalization at the megabase scale.

Functional implications
The partitioning of the genome in compartments and LADs correlates with functional pro-
cesses: B compartments and LADs tend to be transcriptionally inactive and late replicating,
A compartments tend to transcriptionally active and early replicating. A central question
is to what extent these correlations reect cause or consequences. Segregation provides
spatially separated subcompartments that are amenable to di�erent types of reactions,
with di�erent kinetics (127). For example, the high density of heterochromatin, as evi-
denced e.g. by recent electron microscopy data (87), might prevent the assembly of the
multi-Megadalton preinitiation complex and thereby silence gene expression. Consistent
with this view, experimental tethering of genes to the nuclear membrane can lead to their
transcriptional repression (100, 1). On the other hand, experimentally induced chromatin
decondensation by recruitment of an acidic peptide did not lead to transcriptional acti-
vation, arguing against a direct link between chromatin compaction and gene expression
(118). Thus, a complete picture is missing and future research should further explore the
causal relations between compartments, LADs and gene expression.

6. NUCLEAR SCALE ORGANIZATION
Chromosome territories
After mitosis, chromosomes decondense and owing to their large size, limited compaction
and exibility would be expected to intermingle and �ll out the entire nucleus (104). How-
ever, microscopy has shown that the interphase nuclei of many mammalian cells are parti-
tioned into largely disjoint ‘chromosome territories’ (27) (Figure 3e), whose radial positions
display statistical preferences: for instance, gene rich chromosomes tend to occupy central
positions while gene poor chromosomes are more peripheral (28, 16). In yeast, by contrast,
chromosomes strongly intermingle despite their much smaller size (10, 117).

Chromosome
territories: �rst
identi�ed as largely
non-overlapping
nuclear
substructures by
FISH experiments
using probes that
speci�cally cover
entire chromosomes

Mechanisms: What might explain the di�erent organization of chromosomes in these or-
ganisms? One line of explanation is based on the time scale needed for chromosome to
relax after mitosis. Because topological constraints (the assumed inability of distinct poly-
mer chains to cross each other) increase the relaxation time of polymers as the third power
of their length, this time was predicted to be much longer than the cell cycle for mammalian
genomes, but not for yeast. Thus, human chromosomes might simply not have enough time
to equilibrate and mix and interphase territories could reect the individuality of mitotic
chromosomes (103). Support for the prediction that mammalian chromosomes are in an
out-of-equilibrium state came from the �rst Hi-C study, which indicated that the genome-
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wide averaged contact frequency is inversely proportional to genomic distance s (that is,
Pc(s) / s�1) (at least between �500 kb and �5 Mb) in contrast to the Pc(s) / s�3=2

scaling expected for equilibrium (Figure 1c) (68). A fractal (or crumpled) globule model,
where the polymer remains unentangled in contrast to an equilibrated model was proposed
to explain this scaling (53). Conversely, the prediction that yeast chromosomes are at
equilibrium is supported by the fact that a Brownian dynamics simulation can successfully
account for imaging and Hi-C data, including the contact frequency scaling (126, 6).

However, despite the attractiveness of these generic and largely parameter-free models,
several questions remain. First, the action of topoisomerase II -which cuts both strands of
the DNA double helix- was ignored in these simulations, but is expected to strongly reduce
equilibration time by relaxing topological constraints. Whether chromosome territory for-
mation can be explained with realistic modeling of topoisomerase II action remains to be
seen, particularly for post-mitotic cells such as neurons. Second, the incomplete relaxation
model (103) assumed homopolymers and both ignored the presence of compartments, TADs
and di�erences in transcriptional activity, which other models predict to a�ect chromosome
positioning (48). It will therefore be interesting to revisit the formation of chromosome
territories in the context of interactions (e.g. electrostatic (113)) between compartments,
loop extrusion, and di�erential dynamics, all of which will a�ect the size of interphase
chromosomes, even at steady-state.

Functional implications Much as for A/B chromatin compartments, the functional rele-
vance of chromosome territories remains unclear. It has been proposed that chromosome
territories facilitate chromosome condensation prior to mitosis (103). Moreover, because
the spatial proximity of loci or chromosomes correlates with increased translocations, a
hallmark of cancer cells, it has been proposed that the organization in territories acts to
minimize inter-chromosomal rearrangements (82, 17).

Nuclear bodies

Nucleolus: The
largest,
membrane-less
organelle of the
nucleus, contains a
low amount of DNA
and a high level of
ribosomal RNA.

Nuclear bodies are subcompartments of the nucleus that lack a bona �de membrane.
They are usually visible by phase contrast microscopy as spheroid, often dynamic structures,
consisting of a dense aggregate of proteins, RNA and potentially many other macromolecules
and are associated to speci�c functions, such as transcription of certain genes, splicing,
DNA damage repair etc. (Figure 3d). The prototypical nuclear body is the nucleolus,
the site of ribosomal RNA biogenesis (15). Since its discovery, many other ubiquitous
or species-speci�c nuclear bodies have been identi�ed, including nuclear speckles, Cajal
bodies, PML bodies, histone locus bodies, and paraspeckles (72). The nucleation and/or
morphology of nuclear bodies intimately depends on their activity, for example inhibition
of rDNA transcription strongly reduces the nucleolar volume (117), and can be regulated
by posttranslational modi�cations such as phosphorylation of RNA polymerase II (65).

Nuclear speckles:
Small membrane-less
compartments
positioned close to
the nuclear center
and involved in
mRNA splicing

Liquid-liquid phase
separation: a
thermodynamic
process where two
immiscible liquids
progressively
segregate into two
phases, like oil and
water (also termed
demixing or
coacervation)

Mechanisms The mechanisms underlying nuclear body formation are under active investi-
gation, with increased attention being focused on liquid-liquid phase separation (59) (Fig-
ure 3d). Several examples of phase separation inside the nucleus have been reported, often
mediated either by proteins bearing unstructured domains (113, 66), RNAs (39), or other
small molecules (5, 90). For example, the C-terminal domain of RNA polymerase II has
been shown in vitro to perform reversible and regulatable phase-separation (65) and recent
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evidence suggests that similar mechanisms exist in vivo as well (25, 13). Another example,
as mentioned above, is HP1�, which was observed to form droplets in live cell uorescence
microscopy of Drosophila (113). In addition, dephosphorylation promotes droplet disas-
sembly, suggesting a mechanism by which demixing can be regulated. A challenge for the
coming years is to integrate quantitative models of phase separation with the additional
constraints imposed by the physics of polymers (104).

Functions Although lacking a strict membrane, nuclear bodies can sequester some molecules
and exclude others, thereby acting as chemical reactors to catalyze speci�c reactions, de-
coupling them from di�erent pathways. An interesting property of nuclear bodies created
by phase separation is that their very existence can depend on whether its molecular con-
stituents exceed a concentration threshold. This non-linear behaviour could potentially
endow the cell with a ‘switch’-like response to external stimuli (133).

Another potential function, or consequence, of nuclear body formation is the very or-
ganization of chromatin itself. Indeed, it has been shown that chromatin organizes non-
randomly around nuclear bodies. While it is di�cult to chart sequences in close proximity
of a nuclear body with traditional methods, novel techniques have recently been developed
that dispense of proximity ligation to probe for DNA sequences located within much larger
distances of other DNA or RNA sequences ((94), Figure 2c,d) or even a speci�c protein
(22, 23). These techniques reveal a key role of nuclear speckles, and either LADs (22, 23)
or nucleoli (94) in overall chromatin organization, and suggest a plausible mechanism for
locus positioning that merits further investigation.

7. INTERACTIONS BETWEEN LEVELS
A natural question is how the di�erent levels of organization discussed above interact,
either cooperatively or antagonistically, with each other. Since chromosomes are single
connected structures, one might surmise that these levels are all closely interleaved and
hard to disentangle. Therefore, studies able to peel o� individual layers of organization are
particularly instructive. One striking recent example is the experimentally demonstrated
partial decoupling of TADs and compartments (110, 97). In absence of cohesin or its
loader Nipbl, the segregation of A and B compartments not only subsists, but is actually
strengthened (Figure 5a,c): boundaries between compartments become sharper, and their
correlation with histone modi�cations increases. Conversely, deleting the cohesin release
factors (WAPL, and/or PDS5A/B) leads to an enlargement of TADs and a destruction of
A/B compartments (Figure 5d) (128). These experiments indicate that the formation of
TADs and compartments rely on distinct mechanisms, that partly counteract each other.
A similar antagonism is at work between the mechanism that tend to keep chromosomes in
distinct territories and those that create A/B compartments, which tend to mix regions of
di�erent chromosomes belonging to the same compartment. Another salient �nding is the
above mentioned study showing that A/B compartments subsist in absence of tethering to
the nuclear lamina, hence decoupling compartmentalization from LADs (38).

Although a general model able to link all four levels of chromatin organization, from nu-
cleosomes to the entire nucleus, is still lacking, such experiments and modeling approaches
point to future unifying frameworks. Further studies are needed to disentangle the com-
peting forces that shape chromatin architecture in the context of transcription and other
functional processes.
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8. DYNAMIC ORGANIZATION OF THE NUCLEUS
The 3D architecture of the genome is by no means static, since chromatin is in constant
motion, as expected from basic polymer dynamics (Figure 1e) and evidenced by live cell
microscopy in yeast (91, 58) and mammalian cells (26, 20). By itself, this mobility leads to
stochastic variations in chromosome con�gurations in cell populations. The variability in
chromatin organization can also be analyzed in �xed cells using imaging (14) or single cell Hi-
C methods (77, 96), or even inferred from population Hi-C by computational reconstruction
methods (61) (Figure 2h). In addition to the dynamics over short time scales in interphase
cells, chromatin organization changes dramatically during each cell division, and is altered
during di�erentiation, as briey discussed next.

Chromatin organization during the cell cycle
It has long been known from light microscopy that chromosomes undergo major structural
changes during mitosis, when the sister chromatids condense, align on a metaphase plate,
before being pulled apart into the two future daughter cells. New insights into how chromo-
some structure changes during the cell cycle have been obtained by Hi-C in mammalian and
yeast genomes (81, 52, 78, 60, 67, 108). A �rst analysis of synchronised cells showed that
both TADs and compartments remain similar throughout interphase, with only moderate
changes in strength, but little changes in boundaries, yet are completely lost during mitosis.
Mitotic chromosomes assume a universal folding structure independent of cell type that was
well described by an array of random, �100 kb long loops (81). In a subsequent study (52),
the timeline was further re�ned to analyze the successive stages of mitosis every few minutes
and the role of condensin proteins in shaping mitotic chromosomes. Especially noteworthy
was the appearance of a second diagonal in the Hi-C matrix at pro-metaphase, indicative
of a helical chromosome structure, which disappeared upon degradation of condensin II. To
explain their Hi-C and imaging data, the authors developed sophisticated polymer models
where condensin II creates progressively bigger loops of up to �700 kb by the same extrusion
process previously discussed for cohesin (section 4) and in agreement with single molecule
experiments showing condensin mediated extrusion (49). These big loops are further folded
into smaller (�80 kb) loops extruded by condensin I. The condensin II loop anchors are
assumed to form a sca�old that adopts a helical structure from which the nested loops em-
anate radially in a ‘spiral staircase’ arrangement. Interestingly, a super-resolution imaging
study of condensins I and II in mitotic chromosomes provides independent support for the
nested loop arrangement (although the helicity could not be ascertained) with similar quan-
titative estimates of loop sizes (122). Importantly, even though deletion of condensin I and
II results in some morphological changes in mitotic chromosomes, chromosomes remain con-
densed suggesting the involvement of some other unknown proteins in mitotic condensation
(52).

Chromatin reorganization during early development
Although interphase chromatin organization is completely lost during mitosis, it is reestab-
lished in the daughter nuclei. The restoration of TADs can be explained by cohesin loading
and loop extrusion, since the CTCF binding sites that demarcate most TAD boundaries are
encoded in the DNA. Similarly, the reestablishment of compartments can be determined by
histone marks which are inherited after mitosis (2, 116, 40). However the question remains
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how chromatin organization is established in the �rst place during the early stage of devel-
opment. Recent single cell (or low input) Hi-C studies in mouse oocytes and zygotes after
fertilization provide some initial views into this process (43, 50, 35). Interestingly, Hi-C
data show a marked compartmentalization in mouse sperm that lacks in oocytes. This
striking di�erence is attributed to (i) di�erences in compaction (tightly compacted paternal
genome vs more decondensed maternal genome) and (ii) di�erences in transcription during
G1 phase. However after fertilization the di�erence is gradually decreased and after 8 cell
divisions both maternal and paternal genomes acquire full edged A/B compartments. Fu-
ture work may use single cell transcriptomics approaches to further understand the links
between the observed chromatin reorganizations and transcription in early developmental
stages.

FUTURE ISSUES

1. Model the polymorphic chromatin �ber from the scale of nucleosomes to entire
chromosomes.

2. Visualize loop extrusion in live cells. Understand how TADs a�ect enhancer-
promoter interactions and initiate or potentiate transcription.

3. Determine the molecular mechanisms that promote the segregation of A/B com-
partments.

4. Understand the formation of chromosome territories and nuclear bodies in the con-
text of compartments, TADs and phase separation.

9. CONCLUSION
In this review, we have tried to summarize current knowledge about the 4D organization
of the chromatin �ber, our understanding of its mechanisms and some of the functional
consequences of this organization, while also pointing to open questions and future research.
Although necessarily incomplete, we hope that this review will help stimulate further work
in this highly dynamic �eld at the crossroads of genetics, cell biology and physics.
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