C. Chazaud and Y. Yamanaka, Lineage specification in the mouse preimplantation embryo, DEVELOPMENT, vol.143, issue.7, pp.1063-1074, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01923150

N. Schrode, P. Xenopoulos, and A. Piliszek, Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo, GENESIS, vol.51, issue.4, pp.219-233, 2013.

A. A. Lokken and A. Ralston, The Genetic Regulation of Cell Fate During Preimplantation Mouse Development, CURR. TOP. DEV. BIOL, vol.120, pp.173-202, 2016.

J. Artus and C. Chazaud, A close look at the mammalian blastocyst: epiblast and primitive endoderm formation, CELL. MOL. LIFE SCI, vol.71, issue.17, pp.3327-3338, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01923166

B. Plusa, A. Piliszek, and S. Frankenberg, Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst, DEVELOPMENT, vol.135, issue.18, pp.3081-3091, 2008.

C. Chazaud, Y. Yamanaka, and T. Pawson, Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway, DEV. CELL, vol.10, issue.5, pp.615-624, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01923174

F. Gerbe, B. J. Cox, and J. Rossant, Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst, DEVELOPMENTAL BIOLOGY, vol.313, issue.2, pp.594-602, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00352675

S. M. Meilhac, R. J. Adams, and S. A. Morris, Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst, DEVELOPMENTAL BIOLOGY, vol.331, issue.2, pp.210-221, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01572044

K. Hardy, Cell death in the mammalian blastocyst, MOLECULAR HUMAN REPRODUCTION, vol.3, issue.10, pp.919-925, 1997.

G. B. Pierce, A. L. Lewellyn, and R. E. Parchment, Mechanism of programmed cell death in the blastocyst, PROC. NATL. ACAD. SCI. U.S.A, vol.86, issue.10, pp.3654-3658, 1989.

M. Kang, A. Piliszek, and J. Artus, FGF4 is required for lineage restriction and saltand-pepper distribution of primitive endoderm factors but not their initial expression in the mouse, DEVELOPMENT, vol.140, issue.2, pp.267-279, 2013.

D. Krawchuk, N. Honma-yamanaka, and S. Anani, FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst, DEVELOPMENTAL BIOLOGY, vol.384, issue.1, pp.65-71, 2013.

M. Kang, V. Garg, and A. Hadjantonakis, Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2, DEV. CELL, vol.41, issue.5, pp.496-510, 2017.

A. Molotkov, P. Mazot, and J. R. Brewer, Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency, DEV. CELL, vol.41, issue.5, pp.511-526, 2017.

J. Nichols, J. Silva, and M. Roode, Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo, DEVELOPMENT, vol.136, pp.3215-3222, 2009.

Y. Yamanaka, F. Lanner, and J. Rossant, FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst, DEVELOPMENT, vol.137, issue.5, pp.715-724, 2010.

N. Saiz, K. M. Williams, and V. E. Seshan, Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst, NATURE COMMUNICATIONS, vol.7, p.13463, 2016.

S. Bessonnard, S. Coqueran, and S. Vandormael-pournin, ICM conversion to epiblast by FGF/ERK inhibition is limited in time and requires transcription and protein degradation, SCI. REP, vol.7, issue.1, p.12285, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02075462

J. Artus, J. Panthier, and A. Hadjantonakis, A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst, DEVELOPMENT, vol.137, issue.20, pp.3361-3372, 2010.

J. Artus, M. Kang, and M. Cohen-tannoudji, PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst, STEM CELLS, vol.31, issue.9, pp.1932-1941, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02075472

L. C. Cantley, K. R. Auger, and C. Carpenter, Oncogenes and signal transduction, CELL, vol.64, issue.2, pp.281-302, 1991.

J. Andrae, R. Gallini, and C. Betsholtz, Role of platelet-derived growth factors in physiology and medicine, GENES & DEVELOPMENT, vol.22, issue.10, pp.1276-1312, 2008.

F. Bernex, D. Sepulveda, P. Kress, and C. , Spatial and temporal patterns of c-kitexpressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos, DEVELOPMENT, vol.122, issue.10, pp.3023-3033, 1996.

M. Mitsunari, T. Harada, and M. Tanikawa, The potential role of stem cell factor and its receptor c-kit in the mouse blastocyst implantation, MOLECULAR HUMAN REPRODUCTION, vol.5, issue.9, pp.874-879, 1999.

T. Jacks, R. L. Williams, and B. O. , Tumor spectrum analysis in p53-mutant mice, CURRENT BIOLOGY, vol.4, issue.1, pp.1-7, 1994.

T. G. Hamilton, R. A. Klinghoffer, and P. D. Corrin, Evolutionary divergence of plateletderived growth factor alpha receptor signaling mechanisms, MOL. CELL. BIOL, vol.23, issue.11, pp.4013-4025, 2003.

W. N. De-vries, L. T. Binns, and K. S. Fancher, Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes, GENESIS, vol.26, issue.2, pp.110-112, 2000.

K. Yu, J. Xu, and Z. Liu, Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth, DEVELOPMENT, vol.130, issue.13, pp.3063-3074, 2003.

S. M. Morgani and J. M. Brickman, LIF supports primitive endoderm expansion during preimplantation development, DEVELOPMENT, vol.142, issue.20, pp.3488-3499, 2015.

J. Artus, S. Vandormael-pournin, and M. Frodin, Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein, MOL. CELL. BIOL, vol.25, issue.14, pp.6289-6302, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-02075522

A. Beauvais-jouneau, P. Pla, and F. Bernex, A novel model to study the dorsolateral migration of melanoblasts, MECH. DEV, vol.89, issue.1-2, pp.3-14, 1999.

A. Bashamboo, A. H. Taylor, and K. Samuel, The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway, JOURNAL OF CELL SCIENCE, vol.119, pp.3039-3046, 2006.

E. Buchdunger, C. L. Cioffi, and N. Law, Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors, J. PHARMACOL. EXP. THER, vol.295, issue.1, pp.139-145, 2000.

B. J. Druker, S. Tamura, and E. Buchdunger, Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells, NATURE MEDICINE, vol.2, issue.5, pp.561-566, 1996.

G. Guo, M. Huss, and G. Q. Tong, Resolution of Cell Fate Decisions Revealed by Single-Cell Gene Expression Analysis from Zygote to Blastocyst, DEV. CELL, vol.18, issue.4, pp.675-685, 2010.

Y. Ohnishi, W. Huber, and A. Tsumura, Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages, NATURE CELL BIOLOGY, vol.16, issue.1, pp.27-37, 2014.

K. A. Fantauzzo and P. Soriano, PI3K-mediated PDGFR? signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways, GENES & DEVELOPMENT, vol.28, issue.9, pp.1005-1017, 2014.

C. J. Granier, W. Wang, and T. Tsang, Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest, BIOL OPEN, vol.3, issue.9, pp.821-831, 2014.

T. Lin, C. Chao, and S. Saito, p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression, NATURE CELL BIOLOGY, vol.7, issue.2, pp.165-171, 2005.

J. Yu and W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination, DEVELOPMENT, vol.143, issue.17, pp.3050-3060, 2016.

J. Heitman, N. R. Movva, and M. N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, SCIENCE, vol.253, issue.5022, pp.905-909, 1991.

K. Jessen, S. Wang, and L. Kessler, Abstract B148: INK128 is a potent and selective TORC1/2 inhibitor with broad oral antitumor activity, MOL CANCER THER, vol.8, pp.148-148, 2009.

M. L. Vignais, H. B. Sadowski, and D. Watling, Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins, MOL. CELL. BIOL, vol.16, issue.4, pp.1759-1769, 1996.

P. J. Rugg-gunn, B. J. Cox, and F. Lanner, Cell-surface proteomics identifies lineagespecific markers of embryo-derived stem cells, DEV. CELL, vol.22, issue.4, pp.887-901, 2012.

A. Molotkov and P. Soriano, Distinct mechanisms for PDGF and FGF signaling in primitive endoderm development, DEVELOPMENTAL BIOLOGY, vol.442, issue.1, pp.155-161, 2018.

L. Ganeshan, A. Li, and C. O'neill, Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass, BIOLOGY OF REPRODUCTION, vol.83, issue.6, pp.958-964, 2010.

M. Li, Y. He, and W. Dubois, Distinct Regulatory Mechanisms and Functions for p53-Activated and p53-Repressed DNA Damage Response Genes in Embryonic Stem Cells, MOLECULAR CELL, vol.46, issue.1, pp.30-42, 2012.

L. Bi, I. Okabe, and D. J. Bernard, Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase, MAMM GENOME, vol.13, issue.3, pp.169-172, 2002.

M. Murakami, T. Ichisaka, and M. Maeda, mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells, MOL. CELL. BIOL, vol.24, issue.15, pp.6710-6718, 2004.

Y. Gangloff, M. Mueller, and S. G. Dann, Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development, MOL. CELL. BIOL, vol.24, issue.21, pp.9508-9516, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02126925

D. A. Guertin, D. M. Stevens, and C. C. Thoreen, Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1, DEV. CELL, vol.11, issue.6, pp.859-871, 2006.

A. Bulut-karslioglu, S. Biechele, and H. Jin, Inhibition of mTOR induces a paused pluripotent state, NATURE, vol.540, issue.7631, pp.119-123, 2016.