J. S. , M. L. , B. L. , J. P. , and C. , Cancéropôle Ile de France (ORFOCRISE PME-2015). Y.K and EF acknowledge support from Fondation pour la Recherche Médicale (ING20160435205)

, Institut National du Cancer (INCa 2015-135), and Fondation pour la Recherche Médicale

J. Ml, A. V. Fgf, E. B. Ea, . Ml, . Bl et al., AB: all subsequent Zeocin experiments and mutants, Additional image analysis and modeling. EF, CZ: Supervised the study

N. Agmon, B. Liefshitz, C. Zimmer, E. Fabre, and M. Kupiec, Effect of nuclear architecture on the efficiency of double-strand break repair, Nat Cell Biol, vol.15, pp.694-699, 2013.

B. Albert, J. Mathon, A. Shukla, H. Saad, C. Normand et al., Systematic characterization of the conformation and dynamics of budding yeast chromosome XII, J Cell Biol, vol.202, pp.201-210, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01682609

J. Arbona, S. Herbert, E. Fabre, and C. Zimmer, Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations, Genome Biol, vol.18, p.81, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01517883

B. Avs-ßaro-glu, G. Bronk, S. Gordon-messer, J. Ham, D. A. Bressan et al., Effect of chromosome tethering on nuclear organization in yeast, PLoS ONE, vol.9, p.102474, 2014.

M. P. Backlund, R. Joyner, K. Weis, and W. E. Moerner, Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the Double-Helix Point Spread Function microscope, Mol Biol Cell, vol.25, pp.3619-3629, 2014.

E. Baroni, V. Viscardi, H. Cartagena-lirola, G. Lucchini, and M. P. Longhese, The functions of budding yeast Sae2 in the DNA damage response require Mec1-and Tel1-dependent phosphorylation, Mol Cell Biol, vol.24, pp.4151-4165, 2004.

A. B. Berger, G. G. Cabal, E. Fabre, T. Duong, H. Buc et al., High-resolution statistical mapping reveals gene territories in live yeast, Nat Methods, vol.5, pp.1031-1037, 2008.

C. Y. Bonilla, J. A. Melo, and D. P. Toczyski, Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage, Mol Cell, vol.30, pp.267-276, 2008.

K. Bystricky, P. Heun, L. Gehlen, J. Langowski, and S. M. Gasser, Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques, Proc Natl Acad Sci, vol.101, pp.16495-16500, 2004.

G. G. Cabal, A. Genovesio, S. Rodriguez-navarro, C. Zimmer, O. Gadal et al., SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope, Nature, vol.441, pp.770-773, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00207343

A. M. Chiariello, C. Annunziatella, S. Bianco, A. Esposito, and M. Nicodemi, Polymer physics of chromosome large-scale 3D organisation, Sci Rep, vol.6, p.29775, 2016.

M. Clerici, D. Mantiero, G. Lucchini, and M. P. Longhese, The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends, J Biol Chem, vol.280, pp.38631-38638, 2005.

Y. Cui and C. Bustamante, Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc Natl Acad Sci, vol.97, pp.127-132, 2000.

M. Daoud and J. P. Cotton, Star shaped polymers: a model for the conformation and its concentration dependence, Journal de Physique, vol.43, pp.531-538, 1982.
URL : https://hal.archives-ouvertes.fr/jpa-00209423

P. G. De-gennes, Scaling concepts in polymer physics, 1979.

V. Dion, V. Kalck, C. Horigome, B. D. Towbin, and S. M. Gasser, Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery, Nat Cell Biol, vol.14, pp.502-509, 2012.

K. M. Doherty, L. D. Pride, J. Lukose, B. E. Snydsman, R. Charles et al., Loss of a 20S proteasome activator in, The Authors The EMBO Journal Chromatin stiffening after DNA, vol.36, 2012.

, Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action, Genes -Genomes -Genetics, vol.3, pp.943-959

J. E. Haber, J. Abraham, K. A. Nasmyth, J. N. Strathern, A. J. Klar et al.,

R. Lahondes, C. R. Astell, L. Ahlstrom-jonasson, M. Smith, K. Tatchell et al., Mating-type genes and MAT switching in Saccharomyces cerevisiae, Genetics, vol.191, pp.33-64, 2012.

H. Hajjoul, J. Mathon, H. Ranchon, I. Goiffon, J. Mozziconacci et al., High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome, Genome Res, vol.23, pp.1829-1838, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01053149

M. H. Hauer, A. Seeber, V. Singh, R. Thierry, R. Sack et al., Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates, Nat Struct Mol Biol, vol.24, pp.99-107, 2017.

X. He, S. Asthana, and P. K. Sorger, Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast, Cell, vol.101, pp.763-775, 2000.

P. Heun, T. Laroche, K. Shimada, P. Furrer, and S. M. Gasser, Chromosome dynamics in the yeast interphase nucleus, Science, vol.294, pp.2181-2186, 2001.

E. Hinde, X. Kong, K. Yokomori, and E. Gratton, Chromatin dynamics during DNA repair revealed by pair correlation analysis of molecular flow in the nucleus, Biophys J, vol.107, pp.55-65, 2014.

M. V. Imakaev, G. Fudenberg, and L. A. Mirny, Modeling chromosomes: beyond pretty pictures, FEBS Lett, vol.589, pp.3031-3036, 2015.

S. P. Jackson, J. A. Downs, and N. F. Lowndes, A role for Saccharomyces cerevisiae histone H2A in DNA repair, Nature, vol.408, pp.1001-1004, 2000.

S. Khurana, M. J. Kruhlak, J. Kim, A. D. Tran, J. Liu et al., A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance, Cell Rep, vol.8, pp.1049-1062, 2014.

J. Kim, M. Kruhlak, F. Dotiwala, A. Nussenzweig, and J. E. Haber, Heterochromatin is refractory to c-H2AX modification in yeast and mammals, J Cell Biol, vol.178, pp.209-218, 2007.

M. J. Kruhlak, C. A. Dellaire, G. Fernandez-capetillo, O. Müller, W. G. Mcnally et al., Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks, Nussenzweig A, vol.172, pp.823-834, 2006.

J. Lawrimore, J. K. Aicher, P. Hahn, A. Fulp, B. Kompa et al., ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin, Mol Biol Cell, vol.27, pp.153-166, 2016.

C. Lee, R. W. Wang, H. Chang, D. Capurso, M. R. Segal et al., Chromosome position determines the success of double-strand break repair, Proc Natl Acad Sci, vol.113, pp.146-154, 2016.

M. Lisby, R. Rothstein, and U. H. Mortensen, Rad52 forms DNA repair and recombination centers during S phase, Proc Natl Acad Sci, vol.98, pp.8276-8282, 2001.

M. S. Luijsterburg, M. Lindh, K. Acs, M. G. Vrouwe, A. Pines et al., DDB2 promotes chromatin decondensation at UV-induced DNA damage, J Cell Biol, vol.197, pp.267-281, 2012.

W. F. Marshall, A. Straight, J. F. Marko, J. Swedlow, A. Dernburg et al., Interphase chromosomes undergo constrained diffusional motion in living cells, Curr Biol, vol.7, pp.930-939, 1997.

J. Miné-hattab and R. Rothstein, Increased chromosome mobility facilitates homology search during recombination, Nat Cell Biol, vol.14, pp.510-517, 2012.

J. Miné-hattab and R. Rothstein, DNA in motion during double-strand break repair, Trends Cell Biol, vol.23, pp.529-536, 2013.

J. Miné-hattab, V. Recamier, I. Izeddin, R. Rothstein, and X. Darzacq, Chromatin mobility after DNA damage is modified to enhance long distance explorations and minimize local resampling, 2016.

E. J. Nestler, P. Greengard, F. R. Lippincott-raven-neumann, V. Dion, L. R. Gehlen et al., Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination, Genes Dev, vol.26, pp.369-383, 1999.

M. Papamichos-chronakis and C. L. Peterson, Chromatin and the genome integrity network, Nat Rev Genet, vol.14, pp.62-75, 2013.

B. D. Price, D. 'andrea, and A. D. , Chromatin remodeling at DNA double-strand breaks, Cell, vol.152, pp.1344-1354, 2013.

M. Qian, Y. Pang, C. H. Liu, K. Haratake, B. Du et al., Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis, Cell, vol.153, pp.1012-1024, 2013.

C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock et al., , 2002.

, Histone H2A variants H2AX and H2AZ, Curr Opin Genet Dev, vol.12, pp.162-169

J. Renkawitz, C. A. Lademann, and S. Jentsch, Mechanisms and principles of homology search during recombination, Nat Rev Mol Cell Biol, vol.15, pp.369-383, 2014.

J. Ries, C. Kaplan, E. Platonova, H. Eghlidi, and H. Ewers, A simple, versatile method for GFP-based super-resolution microscopy via nanobodies, Nat Methods, vol.9, pp.582-584, 2012.

C. C. Robinett, A. Straight, G. Li, C. Willhelm, G. Sudlow et al., In vivo localization of DNA sequences and visualization of largescale chromatin organization using lac operator/repressor recognition, J Cell Biol, vol.135, pp.1685-1700, 1996.

E. P. Rogakou, Megabase chromatin domains involved in DNA doublestrand breaks in vivo, J Cell Biol, vol.146, pp.905-916, 1999.

A. Rosa, N. B. Becker, and R. Everaers, Looping probabilities in model interphase chromosomes, Biophys J, vol.98, pp.2410-2419, 2010.

A. Rosa and C. Zimmer, Computational models of large-scale genome architecture, Int Rev Cell Mol Biol, vol.307, pp.275-349, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02079507

M. Rubinstein, R. Colby, B. R. Lajoie, G. Jain, and J. Dekker, The long-range interaction landscape of gene promoters, Nature, vol.489, pp.109-113, 2003.

P. Sarangi, R. Steinacher, V. Altmannova, Q. Fu, T. T. Paull et al., Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein, PLoS Genet, vol.11, p.1004899, 2015.

H. Schiessel, The physics of chromatin, J Phys Condens Matter, vol.15, pp.699-774, 2003.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.

A. Seeber, V. Dion, and S. M. Gasser, Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage, The Authors The EMBO Journal, vol.27, 1999.

A. Seeber, V. Dion, and S. M. Gasser, Remodelers move chromatin in response to DNA damage, Cell Cycle, vol.13, pp.877-878, 2014.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes, Nat Methods, vol.5, pp.687-694, 2008.

L. Shi and P. Oberdoerffer, Chromatin dynamics in DNA double-strand break repair, Biochim Biophys Acta, vol.1819, pp.811-819, 2012.

M. Spichal, A. Brion, S. Herbert, A. Cournac, M. Marbouty et al., Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast, J Cell Sci, vol.129, pp.681-692, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01419905

M. O. Steinhauser, Static and dynamic scaling of semiflexible polymer chains-a molecular dynamics simulation study of single chains and melts, Mech Time Depend Mater, vol.12, pp.291-312, 2008.

J. Strecker, G. D. Gupta, W. Zhang, M. Bashkurov, M. Landry et al., DNA damage signalling targets the kinetochore to promote chromatin mobility, Nat Cell Biol, vol.18, pp.281-290, 2016.

K. Takahashi and I. Kaneko, Changes in nuclease sensitivity of mammalian cells after irradiation with 60 Co c-rays, Int J Radiat Biol Relat Stud Phys Chem Med, vol.48, pp.389-395, 1985.

P. Thérizols, T. Duong, B. Dujon, C. Zimmer, and E. Fabre, Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres, Proc Natl Acad Sci, vol.107, p.2025, 2010.

H. Tjong, K. Gong, L. Chen, and F. Alber, Physical tethering and volume exclusion determine higher-order genome organization in budding yeast, 2012.

, Genome Res, vol.22, pp.1295-1305

M. Tokunaga, N. Imamoto, and K. Sakata-sogawa, Highly inclined thin illumination enables clear single-molecule imaging in cells, Nat Methods, vol.5, pp.159-161, 2008.

T. Tsukuda, A. B. Fleming, J. A. Nickoloff, and M. A. Osley, Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae, Nature, vol.438, pp.379-383, 2005.

P. A. Vasquez and K. Bloom, Polymer models of interphase chromosomes, Nucleus, vol.5, pp.376-390, 2014.

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm, Phys Rev Lett, vol.104, p.238102, 2010.

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci, Proc Natl Acad Sci, vol.109, pp.7338-7343, 2012.

H. Wong, H. Marie-nelly, S. Herbert, P. Carrivain, H. Blanc et al., A predictive computational model of the dynamic 3D interphase yeast nucleus, Curr Biol, vol.22, pp.1881-1890, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01420017

H. Wong, J. Arbona, and C. Zimmer, How to build a yeast nucleus, Nucleus, vol.4, pp.361-366, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02079519

C. Zimmer and E. Fabre, Principles of chromosomal organization: lessons from yeast, J Cell Biol, vol.192, pp.723-733, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02079552

Y. Ziv, D. Bielopolski, Y. Galanty, C. Lukas, Y. Taya et al., Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway, Nat Cell Biol, vol.8, pp.870-876, 2006.

, The EMBO Journal, vol.36, 2017.