S. T. and M. C. , acknowledge support from the Institut Pasteur and the Agence Nationale de la Recherche (Laboratoire d'Excellence Revive, Investissement d'Avenir

M. G. Agrawal and L. H. Bowman, Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation, J. Biol. Chem, vol.262, pp.4868-4875, 1987.

J. Armistead and B. Triggs-raine, Diverse diseases from a ubiquitous process: the ribosomopathy paradox, FEBS Lett, vol.588, pp.1491-1500, 2014.

J. Baßler, H. Paternoga, I. Holdermann, M. Thoms, S. Granneman et al., A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation, J. Cell Biol, vol.207, pp.481-498, 2014.

M. Buszczak, R. A. Signer, and S. J. Morrison, Cellular differences in protein synthesis regulate tissue homeostasis, Cell, vol.159, pp.242-251, 2014.

T. Chaillou, T. J. Kirby, and J. J. Mccarthy, Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass, J. Cell. Physiol, vol.229, pp.1584-1594, 2014.

J. V. Chakkalakal, K. M. Jones, M. A. Basson, and A. S. Brack, The aged niche disrupts muscle stem cell quiescence, Nature, vol.490, pp.355-360, 2012.

S. Cormier, S. Le-bras, C. Souilhol, S. Vandormael-pournin, B. Durand et al., The murine ortholog of notchless, a direct regulator of the notch pathway in Drosophila melanogaster, is essential for survival of inner cell mass cells, Mol. Cell. Biol, vol.26, pp.3541-3549, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02075508

C. De-la, J. Sanz-martinez, E. Remacha, and M. , The essential WDrepeat protein Rsa4p is required for rRNA processing and intra-nuclear transport of 60S ribosomal subunits, Nucleic Acids Res, vol.33, pp.5728-5739, 2005.

M. Fromont-racine, B. Senger, C. Saveanu, and F. Fasiolo, Ribosome assembly in eukaryotes, Gene, vol.313, pp.17-42, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-01404699

B. Gayraud-morel, F. Chre?tienchre?tien, P. Flamant, D. Gome?-s, P. S. Zammit et al., A role for the myogenic determination gene Myf5 in adult regenerative myogenesis, Dev. Biol, vol.312, pp.13-28, 2007.

B. Gayraud-morel, F. Chretien, A. Jory, R. Sambasivan, E. Negroni et al., Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells, J. Cell Sci, vol.125, pp.1738-1749, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00705770

B. Gayraud-morel, F. Pala, H. Sakai, and S. Tajbakhsh, Isolation of muscle stem cells from mouse skeletal muscle, Methods Mol. Biol, vol.1556, pp.23-39, 2017.

L. Golomb, S. Volarevic, and M. Oren, p53 and ribosome biogenesis stress: the essentials, FEBS Lett, vol.588, pp.2571-2579, 2014.

J. V. Gray, G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer et al., Sleeping beauty": quiescence in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev, vol.68, pp.187-206, 2004.

D. Hardy, A. Besnard, M. Latil, G. Jouvion, D. Briand et al., Comparative study of injury models for studying muscle regeneration in mice, PLoS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01447903

F. A. Jacobs, R. C. Bird, and B. H. Sells, Differentiation of rat myoblasts. Regulation of turnover of ribosomal proteins and their mRNAs, Eur. J. Biochem, vol.150, pp.255-263, 1985.

A. C. Keefe, J. A. Lawson, S. D. Flygare, Z. D. Fox, M. P. Colasanto et al., Muscle stem cells contribute to myofibres in sedentary adult mice, Nat. Commun, vol.6, p.7087, 2015.

N. Kondrashov, A. Pusic, C. R. Stumpf, K. Shimizu, A. C. Hsieh et al., Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning, Cell, vol.145, pp.383-397, 2011.

F. Lang, S. Aravamudhan, H. Nolte, C. Tu?-rk, S. Ho-?-lper et al., Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy, Dis. Model Mech, vol.10, pp.881-896, 2017.

L. Bouteiller, M. Souilhol, C. Beck-cormier, S. Stedman, A. Burlen-defranoux et al., Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells, J. Exp. Med, vol.210, pp.2351-2369, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00881090

M. S. Lindstrom, Emerging functions of ribosomal proteins in gene-specific transcription and translation, Biochem. Biophys. Res. Commun, vol.379, pp.167-170, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

Y. Matsuo, S. Granneman, M. Thoms, R. Manikas, D. Tollervey et al., Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export, Nature, vol.505, pp.112-116, 2014.

E. W. Mills and R. Green, Ribosomopathies: there's strength in numbers, Science, vol.358, p.2755, 2017.

P. Miniou, D. Tiziano, T. Frugier, N. Roblot, M. Le-meur et al., , 1999.

, Gene targeting restricted to mouse striated muscle lineage, Nucleic Acids Res, vol.27, pp.27-30

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state, Stem Cells, vol.30, pp.243-252, 2012.

P. Nerurkar, M. Altvater, S. Gerhardy, S. Schu?-tz, U. Fischer et al., Eukaryotic ribosome assembly and nuclear export, Int. Rev. Cell Mol. Biol, vol.319, pp.107-140, 2015.

L. E. Norton and D. K. Layman, Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise, J. Nutr, vol.136, pp.533-537, 2006.

M. O'donohue, V. Choesmel, M. Faubladier, G. Fichant, and P. Gleizes, Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits, J. Cell Biol, vol.190, pp.853-866, 2010.

B. Pawlikowski, C. Pulliam, N. D. Betta, G. Kardon, and B. B. Olwin, Pervasive satellite cell contribution to uninjured adult muscle fibers, Skelet. Muscle, vol.5, p.42, 2015.

S. Pechmann, F. Willmund, and J. Frydman, The ribosome as a hub for protein quality control, Mol. Cell, vol.49, pp.411-421, 2013.

C. Pen-?-a, E. Hurt, and V. G. Panse, Eukaryotic ribosome assembly, transport and quality control, Nat. Struct. Mol. Biol, vol.24, pp.689-699, 2017.

F. Relaix and P. S. Zammit, Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage, Development, vol.139, pp.2845-2856, 2012.

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. A. Blasco, and S. Tajbakhsh, A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division, Cell, vol.148, pp.112-125, 2012.

A. P. Ross and K. S. Zarbalis, The emerging roles of ribosome biogenesis in craniofacial development, Front Physiol, vol.5, p.26, 2014.

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates, Dev. Cell, vol.16, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.07.007

URL : https://hal.archives-ouvertes.fr/hal-00428975

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 is required for the specification of myogenic satellite cells, Cell, vol.102, pp.777-786, 2000.

A. L. Siegel, P. K. Kuhlmann, and D. D. Cornelison, Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging, Skelet. Muscle, vol.1, p.7, 2011.
DOI : 10.1186/2044-5040-1-7

URL : https://skeletalmusclejournal.biomedcentral.com/track/pdf/10.1186/2044-5040-1-7

R. A. Signer, J. A. Magee, A. Salic, and S. J. Morrison, Haematopoietic stem cells require a highly regulated protein synthesis rate, Nature, vol.509, pp.49-54, 2014.
DOI : 10.1038/nature13035

URL : http://europepmc.org/articles/pmc4015626?pdf=render

R. A. Signer, L. Qi, Z. Zhao, D. Thompson, A. A. Sigova et al., The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs, Genes Dev, vol.30, pp.1698-1703, 2016.

M. J. Stec, D. L. Mayhew, and M. M. Bamman, The effects of age and resistance loading on skeletal muscle ribosome biogenesis, J. Appl. Physiol, vol.119, pp.851-857, 1985.

A. Stedman, S. Beck-cormier, M. Le-bouteiller, A. Raveux, S. Vandormaelpournin et al., Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells, Cell Death Differ, vol.22, pp.1865-1876, 2015.
DOI : 10.1038/cdd.2015.57

URL : https://hal.archives-ouvertes.fr/hal-01316466

S. Xue and M. Barna, Specialized ribosomes: a new frontier in gene regulation and organismal biology, Nat. Rev. Mol. Cell Biol, vol.13, pp.355-369, 2012.
DOI : 10.1038/nrm3359

URL : http://europepmc.org/articles/pmc4039366?pdf=render

S. Xue, S. Tian, K. Fujii, W. Kladwang, R. Das et al., RNA regulons in Hox 5? UTRs confer ribosome specificity to gene regulation, Nature, vol.517, pp.33-38, 2015.
DOI : 10.1038/nature14010

URL : http://europepmc.org/articles/pmc4353651?pdf=render

P. S. Zammit and J. R. Beauchamp, The skeletal muscle satellite cell: stem cell or son of stem cell?, Differentiation, vol.68, pp.193-204, 2001.

Y. Zhang, G. W. Wolf, K. Bhat, A. Jin, T. Allio et al., Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway, Mol. Cell. Biol, vol.23, pp.8902-8912, 2003.
DOI : 10.1128/mcb.23.23.8902-8912.2003

URL : https://mcb.asm.org/content/23/23/8902.full.pdf

Q. Zhang, N. A. Shalaby, and M. Buszczak, Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage, Science, vol.343, pp.298-301, 2014.

X. Zhou, W. Liao, J. Liao, P. Liao, and H. Lu, Ribosomal proteins: functions beyond the ribosome, J. Mol. Cell Biol, vol.7, pp.92-104, 2015.
DOI : 10.1093/jmcb/mjv014

URL : https://academic.oup.com/jmcb/article-pdf/7/2/92/11735023/mjv014.pdf

V. Zismanov, V. Chichkov, V. Colangelo, S. Jamet, S. Wang et al., Phosphorylation of eIF2alpha is a translational control mechanism regulating muscle stem cell quiescence and selfrenewal, Cell Stem Cell, vol.18, pp.79-90, 2016.