T. I. Lee and R. A. Young, Transcriptional regulation and its misregulation in disease, Cell, vol.152, pp.1237-1251, 2013.
DOI : 10.1016/j.cell.2013.02.014

URL : https://doi.org/10.1016/j.cell.2013.02.014

W. Tee and D. Reinberg, Chromatin features and the epigenetic regulation of pluripotency states in ESCs, Development, vol.141, pp.2376-2390, 2014.

T. Suganuma and J. L. Workman, Chromatin and signaling, Curr. Opin. Cell Biol, vol.25, pp.322-326, 2013.

P. Sen, P. P. Shah, R. Nativio, and S. L. Berger, Epigenetic Mechanisms of longevity and aging, Cell, vol.166, pp.822-839, 2016.
DOI : 10.1016/j.cell.2016.07.050

URL : https://doi.org/10.1016/j.cell.2016.07.050

J. Massagué, TGF signalling in context, Nat. Rev. Mol. Cell Biol, vol.13, pp.616-630, 2012.

A. Ebert, G. Schotta, S. Lein, S. Kubicek, V. Krauss et al., Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila, Genes Dev, vol.18, pp.2973-2983, 2004.
DOI : 10.1101/gad.323004

URL : http://genesdev.cshlp.org/content/18/23/2973.full.pdf

V. K. Tiwari, M. B. Stadler, C. Wirbelauer, R. Paro, D. Schübelersch¨schübeler et al., A chromatin-modifying function of JNK during stem cell differentiation, Nat. Genet, vol.44, pp.94-100, 2011.

W. A. Flavahan, E. Gaskell, and B. E. Bernstein, Epigenetic plasticity and the hallmarks of cancer, Science, vol.357, p.2380, 2017.

M. T. Epping, L. Wang, M. J. Edel, L. Carlée, M. Hernandez et al., The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling, Cell, vol.122, pp.835-847, 2005.

S. Rousseaux, A. Debernardi, B. Jacquiau, A. Vitte, A. Vesin et al., Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers, Sci. Transl. Med, vol.5, pp.186-66, 2013.
DOI : 10.1126/scitranslmed.3005723

URL : https://hal.archives-ouvertes.fr/hal-01261754

O. J. Finn, A Believer's overview of cancer immunosurveillance and immunotherapy, J. Immunol, pp.385-391, 0200.

M. F. Gjerstorff, M. H. Andersen, and H. J. Ditzel, Oncogenic cancer/testis antigens: prime candidates for immunotherapy, Oncotarget, vol.6, pp.15772-15787, 2015.
DOI : 10.18632/oncotarget.4694

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=4694&path%5B%5D=10725

Z. A. Gibbs and A. W. Whitehurst, Emerging contributions of Cancer/Testis antigens to neoplastic behaviors, Trends Cancer, vol.4, pp.701-712, 2018.
DOI : 10.1016/j.trecan.2018.08.005

L. Pabic, H. Bonnier, D. Wewer, U. M. Coutand, A. Musso et al., ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling, Hepatology, vol.37, pp.1056-1066, 2003.
DOI : 10.1053/jhep.2003.50205

L. Pabic, H. L'helgoualc'h, A. Coutant, A. Wewer, U. M. Baffet et al., Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells, J. Hepatol, vol.43, pp.1038-1044, 2005.

R. Roy, U. M. Wewer, D. Zurakowski, S. E. Pories, and M. A. Moses, ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage, J. Biol. Chem, vol.279, pp.51323-51330, 2004.
DOI : 10.1074/jbc.m409565200

URL : http://www.jbc.org/content/279/49/51323.full.pdf

L. Peduto, V. E. Reuter, A. Sehara-fujisawa, D. R. Shaffer, H. I. Scher et al., ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression, Oncogene, vol.25, pp.5462-5466, 2006.
DOI : 10.1038/sj.onc.1209536

URL : https://www.nature.com/articles/1209536.pdf

S. Shao, Z. Li, W. Gao, G. Yu, D. Liu et al., ADAM-12 as a diagnostic marker for the proliferation, migration and invasion in patients with small cell lung cancer, PLoS ONE, vol.9, p.85936, 2014.

S. Duhachek-muggy, Y. Qi, R. Wise, L. Alyahya, H. Li et al., Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer, Mol. Cancer, p.32, 2017.
DOI : 10.1186/s12943-017-0599-6

URL : https://molecular-cancer.biomedcentral.com/track/pdf/10.1186/s12943-017-0599-6

K. Yamaguchi, K. Shirakabe, H. Shibuya, K. Irie, I. Oishi et al., Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction, Science, vol.270, 1995.

E. Solomon, H. Li, S. Duhachek-muggy, E. Syta, and A. Zolkiewska, The role of SnoN in transforming growth factor beta1-induced expression of metalloprotease-disintegrin ADAM12, J. Biol. Chem, vol.285, pp.21969-21977, 2010.

V. Ramdas, M. Mcbride, L. Denby, and A. H. Baker, Canonical transforming growth factor-signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29, Am. J. Pathol, vol.183, pp.1885-1896, 2013.

Y. M. Kim, J. Kim, S. C. Heo, S. H. Shin, E. K. Do et al., Proteomic identification of ADAM12 as a regulator for TGF-1-induced differentiation of human mesenchymal stem cells to smooth muscle cells, PLoS ONE, vol.7, p.40820, 2012.

A. Ray, S. Dhar, and B. K. Ray, Transforming growth factor-beta1-mediated activation of NF-kappaB contributes to enhanced ADAM-12 expression in mammary carcinoma cells, Mol. Cancer Res, vol.8, pp.1261-1270, 2010.

M. Ruff, A. Leyme, F. Le-cann, D. Bonnier, J. Le-seyec et al., The disintegrin and metalloprotease ADAM12 is associated with TGF--Induced epithelial to mesenchymal transition, PLoS ONE, vol.10, p.139179, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207281

M. Ferrand, O. Kirsh, A. Griveau, D. Vindrieux, N. Martin et al., Screening of a kinase library reveals novel pro-senescence kinases and their common NF-B-dependent transcriptional program, Aging, vol.7, pp.986-1003, 2015.

X. Ma, M. Warnier, C. Raynard, M. Ferrand, O. Kirsh et al., The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling, Aging Cell, vol.17, p.12831, 2018.

C. A. Glazer, I. M. Smith, M. F. Ochs, S. Begum, W. Westra et al., Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC, PLoS ONE, vol.4, p.8189, 2009.

B. Miotto, C. Marchal, G. Adelmant, N. Guinot, P. Xie et al., Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells, Nucleic Acids Res, vol.46, pp.4392-4404, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02132922

S. Laget, B. Miotto, H. G. Chin, P. Estève, R. J. Roberts et al., MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress, Epigenetics, vol.9, pp.546-556, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02132566

G. J. Filion, S. Zhenilo, S. Salozhin, D. Yamada, E. Prokhortchouk et al., A family of human zinc finger proteins that bind methylated DNA and repress transcription, Mol. Cell. Biol, vol.26, pp.169-181, 2006.

S. Dulauroy, S. E. Di-carlo, F. Langa, G. Eberl, and L. Peduto, Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury, Nat. Med, vol.18, pp.1262-1270, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01402722

A. Roussel-gervais, I. Naciri, O. Kirsh, L. Kasprzyk, G. Velasco et al., Loss of the Methyl-CpG-Binding protein ZBTB4 alters mitotic checkpoint, increases aneuploidy, and promotes tumorigenesis, Cancer Res, vol.77, pp.62-73, 2017.

L. Ferry, A. Fournier, T. Tsusaka, G. Adelmant, T. Shimazu et al., Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation, Mol. Cell, vol.67, pp.550-565, 2017.

D. Yamada, R. Pérez-torrado, G. Filion, M. Caly, B. Jammart et al., The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4, Oncogene, vol.28, pp.2535-2544, 2009.

L. Collado-torres, A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub et al., Reproducible RNA-seq analysis using recount2, Nat. Biotechnol, vol.35, pp.319-321, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., ) limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

J. S. Boehm, J. J. Zhao, J. Yao, S. Y. Kim, R. Firestein et al., Integrative genomic approaches identify IKBKE as a breast cancer oncogene, Cell, vol.129, pp.1065-1079, 2007.

J. Ninomiya-tsuji, T. Kajino, K. Ono, T. Ohtomo, M. Matsumoto et al., A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase, J. Biol. Chem, vol.278, pp.18485-18490, 2003.

E. Michishita, R. A. Mccord, E. Berber, M. Kioi, H. Padilla-nash et al., SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin, Nature, vol.452, pp.492-496, 2008.

D. Helmlinger and L. Tora, Sharing the SAGA, Trends Biochem. Sci, vol.42, pp.850-861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01875259

M. Fournier, M. Orpinell, C. Grauffel, E. Scheer, J. Garnier et al., , 2016.

, KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification, Nat. Commun, vol.7, p.13227

L. Jurida, J. Soelch, M. Bartkuhn, K. Handschick, H. M-¨-uller et al., The activation of IL-1-Induced enhancers depends on TAK1 kinase activity and NF-B p65, Cell Rep, pp.2-9, 2015.

S. Duhachek-muggy, H. Li, Y. Qi, and A. Zolkiewska, Alternative mRNA splicing generates two distinct ADAM12 prodomain variants, PLoS ONE, vol.8, p.75730, 2013.

J. Guo, J. Zhang, X. Zhang, Z. Zhang, X. Wei et al., Constitutive activation of MEK1 promotes Treg cell instability in vivo, J. Biol. Chem, vol.289, pp.35139-35148, 2014.

M. Leonardi, E. Perna, S. Tronnolone, D. Colecchia, and M. Chiariello, Activated kinase screening identifies the IKBKE oncogene as a positive regulator of autophagy, Autophagy, 2018.

J. M. Ellis and M. J. Wolfgang, A genetically encoded metabolite sensor for malonyl-CoA, Chem. Biol, vol.19, pp.1333-1339, 2012.

H. Zhou, M. E. Dickson, M. S. Kim, R. Bassel-duby, and E. N. Olson, Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.11864-11869, 2015.

T. Yadav, J. Quivy, and G. Almouzni, Chromatin plasticity: A versatile landscape that underlies cell fate and identity, Science, vol.361, pp.1332-1336, 2018.

L. Tasselli, W. Zheng, and K. F. Chua, SIRT6: Novel mechanisms and links to aging and disease, Trends Endocrinol. Metab, vol.28, pp.168-185, 2017.

T. L. Kawahara, N. A. Rapicavoli, A. R. Wu, K. Qu, S. R. Quake et al., Dynamic chromatin localization of Sirt6 shapes stress-and aging-related transcriptional networks, PLoS Genet, vol.7, p.1002153, 2011.

J. E. Dominy, Y. Lee, M. P. Jedrychowski, H. Chim, M. J. Jurczak et al., The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis, Mol. Cell, vol.48, pp.900-913, 2012.

A. A. Ajibade, H. Y. Wang, and R. Wang, Cell type-specific function of TAK1 in innate immune signaling, Trends Immunol, vol.34, pp.307-316, 2013.

A. Thiefes, S. Wolter, J. F. Mushinski, E. Hoffmann, O. Dittrich-breiholz et al., Simultaneous blockade of NFkappaB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor [corrected] target genes, J. Biol. Chem, vol.280, pp.27728-27741, 2005.

K. Rzeczkowski, K. Beuerlein, H. M-¨-uller, and O. Dittrich-breiholz,

H. Schneider, D. Kettner-buhrow, H. Holtmann, and M. Kracht,

, N-terminal kinase phosphorylates DCP1a to control formation of P bodies, J. Cell Biol, vol.194, pp.581-596

K. Handschick, K. Beuerlein, L. Jurida, M. Bartkuhn, H. M-¨-uller et al., Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-B-dependent gene expression, Mol. Cell, vol.53, pp.193-208, 2014.

M. Kveiborg, C. Fröhlichfr¨fröhlich, R. Albrechtsen, V. Tischler, N. Dietrich et al., A role for ADAM12 in breast tumor progression and stromal cell apoptosis, Cancer Res, vol.65, pp.4754-4761, 2005.

H. Sakurai, Targeting of TAK1 in inflammatory disorders and cancer, Trends Pharmacol. Sci, vol.33, pp.522-530, 2012.

A. Singh, M. F. Sweeney, M. Yu, A. Burger, P. Greninger et al., TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers, Cell, vol.148, pp.639-650, 2012.

J. Totzke, D. Gurbani, R. Raphemot, P. F. Hughes, K. Bodoor et al., Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-inhibition for cancer and autoimmune disease, Cell Chem Biol, vol.24, pp.1029-1039, 2017.

Y. Ji, Z. Huang, X. Yang, X. Wang, L. Zhao et al., The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis, Nat. Med, vol.24, pp.213-223, 2018.

J. Bonnet, C. Wang, T. Baptista, S. D. Vincent, W. Hsiao et al., The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription, Genes Dev, vol.28, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02130240