D. Zhang and D. E. Zhang, Interferon-stimulated gene 15 and the protein ISGylation system, J Interferon Cytokine Res, vol.31, pp.119-130, 2011.

J. A. Campbell and D. J. Lenschow, Emerging roles for immunomodulatory functions of free ISG15, J Interferon Cytokine Res, vol.33, pp.728-738, 2013.

Z. Wang, W. G. Zhu, and X. Xu, Ubiquitin-like modifications in the DNA damage response, Mutat Res, 2017.

M. P. Malakhov, O. A. Malakhova, K. I. Kim, K. J. Ritchie, and D. E. Zhang, UBP43 (USP18) specifically removes ISG15 from conjugated proteins, J. Biol. Chem, vol.277, pp.9976-9981, 2002.
DOI : 10.1074/jbc.m109078200

URL : http://www.jbc.org/content/277/12/9976.full.pdf

O. A. Malakhova, UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity, EMBO J, vol.25, pp.2358-2367, 2006.

V. Francois-newton, M. Livingstone, B. Payelle-brogard, G. Uze, and S. Pellegrini, USP18 establishes the transcriptional and antiproliferative interferon alpha/beta differential, Biochem J, vol.446, pp.509-516, 2012.

M. E. Meuwissen, Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome, J Exp Med, vol.213, pp.1163-1174, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02070980

X. Zhang, Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation, Nature, vol.517, pp.89-93, 2015.

S. D. Speer, ISG15 deficiency and increased viral resistance in humans but not mice, Nat Commun, vol.7, p.11496, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02070604

S. Tokarz, The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase, J Biol Chem, vol.279, pp.46424-46430, 2004.

T. Cardozo and M. Pagano, The SCF ubiquitin ligase: insights into a molecular machine, Nat Rev Mol Cell Biol, vol.5, pp.739-751, 2004.

D. Frescas and M. Pagano, Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer, Nat Rev Cancer, vol.8, pp.438-449, 2008.

T. Bashir, N. V. Dorrello, V. Amador, D. Guardavaccaro, and M. Pagano, Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase, Nature, vol.428, pp.190-193, 2004.

W. Wei, Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex, Nature, vol.428, pp.194-198, 2004.

G. Rodier, P. Coulombe, P. L. Tanguay, C. Boutonnet, and S. Meloche, Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase, EMBO J, vol.27, pp.679-691, 2008.

B. Cen, Regulation of Skp2 levels by the Pim-1 protein kinase, J Biol Chem, vol.285, pp.29128-29137, 2010.

H. Inuzuka, Acetylation-dependent regulation of Skp2 function, Cell, vol.150, pp.179-193, 2012.

M. Gstaiger, Skp2 is oncogenic and overexpressed in human cancers, Proc Natl Acad Sci, vol.98, pp.5043-5048, 2001.

K. I. Nakayama and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer, Nat Rev Cancer, vol.6, pp.369-381, 2006.

D. D. Hershko, Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer, Cancer, vol.112, pp.1415-1424, 2008.

K. I. Arimoto, STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling, Nat Struct Mol Biol, vol.24, pp.279-289, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02071003

F. Okumura, W. Zou, and D. E. Zhang, ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP, Genes Dev, vol.21, pp.255-260, 2007.

Y. F. Huang, S. Wee, J. Gunaratne, D. P. Lane, and D. V. Bulavin, Isg15 controls p53 stability and functions, vol.13, pp.2200-2210, 2014.

C. Wirbelauer, The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts, EMBO J, vol.19, pp.5362-5375, 2000.

J. Merlet, J. Burger, J. E. Gomes, and L. Pintard, Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization, Cell Mol Life Sci, vol.66, 1924.
URL : https://hal.archives-ouvertes.fr/hal-00363831

C. Zhao, C. Denison, J. M. Huibregtse, S. Gygi, and R. M. Krug, Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways, Proc Natl Acad Sci, vol.102, pp.10200-10205, 2005.

Y. Li, S. Gazdoiu, Z. Q. Pan, and S. Y. Fuchs, Stability of homologue of Slimb F-box protein is regulated by availability of its substrate, J Biol Chem, vol.279, pp.11074-11080, 2004.

P. De-bie and A. Ciechanover, Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms, Cell Death Differ, vol.18, pp.1393-1402, 2011.

J. Cai, Downregulation of USP18 inhibits growth and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma cells by suppressing BCL2L1, Exp Cell Res, vol.358, pp.315-322, 2017.

H. Potu, A. Sgorbissa, and C. Brancolini, Identification of USP18 as an important regulator of the susceptibility to IFN-alpha and drug-induced apoptosis, Cancer Res, vol.70, pp.655-665, 2010.

A. Sgorbissa, C. Brancolini, and . Ifns, ISGylation and cancer: Cui prodest?, Cytokine Growth Factor Rev, vol.23, pp.307-314, 2012.
DOI : 10.1016/j.cytogfr.2012.07.003

O. Sangfelt, S. Erickson, and D. Grander, Mechanisms of interferon-induced cell cycle arrest, Front Biosci, vol.5, pp.479-487, 2000.

P. Genin, Optineurin regulates the interferon response in a cell cycle-dependent manner, PLoS Pathog, vol.11, p.1004877, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01147388

V. Francois-newton, USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response, PLoS One, vol.6, p.22200, 2011.

D. Kachaner, Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression, Mol Cell, vol.45, pp.553-566, 2012.