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The Human Dynamic Clamp: 
a probe for Coordination across Neural, 
Behavioral, and Social Scales 

Guillaume Dumas, Aline Lefebvre, Mengsen Zhang, Emmanuelle Tognoli, 
J.A. Scott Kelso 

Abstract Humans (with their brains, bodies and behaviors) are complex dynam-
ical systems embedded in an environment, that includes a multitude of other con-
specifics. Moving beyond previous brain centered views of the human mind re-
quires to develop a parsimonious yet integrative account that relates neural, 
behavioral, and social scales. Social neuroscience has recently started to 
acknowledge the importance of relational dynamics when it extended its purview 
from social stimuli to human-human interactions. Human-machine interactions al-
so constitute promising tools to probe multiple scales in a controlled manner. In-
spired by the electrophysiological method of the dynamic clamp, Virtual Partner 
Interaction (VPI) allows real time interaction between human subjects and their 
dynamical system’s simulations. This provides a new test bed for operationalizing 
theoretical models in experimental settings. We discuss how VPI can be general-
ized into a Human Dynamic Clamp (HDC), a paradigm that allows the exploration 
of the parameter spaces of interactional dynamics in various contexts: from 
rhythmic and discrete coordination to adaptive and intentional behaviors, includ-
ing learning. HDC brings humans and machines together to question our under-
standing of the natural and our theory behind the artificial. 

X.1 Introduction 

Social neuroscience seeks to bridge the gap between the neural, the behavioral and 
the social. Such an agenda contrasts with cognitive science and the shortcoming of 
its brain-centered and individualistic approach to the mind. Recently, several ap-
proaches have proposed to go beyond a third person representational account of 
others by investigating social interaction from developmental, dynamical and rela-
tional viewpoints. This departure from a strictly reductionist view calls for new 
manners of empirical investigation along with a theoretical account of their vari-
ous scales of organization. With those advances, one aims to integrate comple-
mentary aspects of the problem of social coordination into a coherent, comprehen-
sive and parsimonious whole. In this respect, non-linear dynamical systems theory 
has already proved a good formalism to relate biological, psychological and more 
recently social levels (Kelso et al. 2013). This paper discusses a new experimental 
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paradigm grounded in the framework of Coordination Dynamics (Kelso 1992; 
1995; Kelso 2009). We describe the development of Virtual Partner Interaction 
(VPI), a system allowing to couple a human with a theoretical model of movement 
coordination in real time (Kelso et al. 2009; Dumas et al. 2014). We review its 
generalization into the “Human Dynamic Clamp” (HDC), a new paradigm for 
Cognitive Science to study the multiple scales of coordination that govern human 
brain and behavior. 

This novel paradigm pursues an already ongoing grip of Cognitive Science to-
ward multiscale coordination  (Kelso 1995; Bressler and Tognoli 2006; Kelso et 
al. 2013). In the exemplary case of hand movements for instance, social interac-
tions span multiple scales in time: from position, phase and frequency of move-
ments to the turn-taking between people (e.g. Oullier et al. 2003). Such social in-
teraction also gives rise to neural coordination within and across brains (Tognoli et 
al. 2007; Dumas et al. 2010; Müller et al. 2013). Multiple scales are also present in 
space, from the processing of information at synaptic levels to the level of large 
neural assemblies giving rise to different rhythms (Buzsáki and Draguhn 2004). 
Moreover, neurophysiology shows how these two dimensions are intertwined: 
neural oscillations at large time-scales (i.e. low frequencies) tend to cover larger 
scales in space, whereas shorter time-scales (i.e. high frequencies) appear to be 
more localized (Tognoli and Kelso 2014). Thus, both brain and behavior are 
meshed together across multiple scales of time and space.  

Since the present scientific approach aims to combine experimental studies 
with theoretical models, the key challenge is to connect these observations across 
scales and levels of organization within a coherent theoretical framework 
(Maturana and Varela 1987). Coordination dynamics aims at such understanding 
through the synergetic concepts of self-organization (Haken 1983) and the math-
ematical tools of dynamical systems theory (Kelso 1995; Kelso & Haken, 1995; 
Fuchs 2013; Schöner & Kelso, 1988). It seeks both general principles and func-
tionally-specific mechanisms of coordination (Kelso 2009) and aims at connecting 
multiple scales by emphasizing reciprocal coupling between levels, upward and 
downward (Kelso et al. 2013). In this perspective, coordination between humans 
represents an operational playground for experimental investigation at the cross-
road of the neural, the behavioral and the social. 

Recently, hyperscanning techniques have delivered access to the simultaneous 
recording of brain activity from interacting people and thus to the study of brain 
and behavior coordination at both intra- and inter-individual scales (Montague et 
al. 2002; Tognoli et al. 2007; Dumas et al. 2011; Konvalinka and Roepstorff 2012; 
Hasson et al. 2012; Babiloni and Astolfi 2012). In doing so, this technique has al-
so reintroduced real social interaction into laboratory studies of human behavior, a 
key feature that was oddly lacking from earlier work within a (cognitively-
inspired) social neuroscience, as it resorted to exposing one subject to social 
“stimuli” rather than examining interactions (Hari and Kujala 2009; Dumas 2011; 
Schilbach et al. 2013; Hari et al. 2015). Further, the use of reciprocal paradigms 
and a real second-person approach of social cognition do not necessarily require 
the presence of two or more subjects in the experimental task (Schilbach et al. 
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2013). Instead, one of the interacting partners can be substituted with a virtual 
agent whose design sustains bi-directional coupling between real and simulated 
partners (Kelso et al. 2009; Pfeiffer et al. 2011; Mattout 2012). 

X.2 Human-Machine Interaction as a Research Tool 

Meanwhile, in other areas of science and engineering, a plethora of studies was 
concentrating on subjective perception of artificial agents by humans, with the 
goal of designing realistic avatars for potential applications to, e.g. video games, 
cinema, or eLearning assistants (Scholtz 2003) to name just a few. In this line of 
research, the exercise was to mimic facets of human behavior rather than to model 
foundational neurobehavioral mechanisms. Interestingly, participants’ beliefs of 
realism were influenced by emotionally and behaviorally contingent responses 
made by the artificial agent (Ochs et al. 2008; see also Zhang et al. 2016); this 
finding hints at the importance of reciprocal coupling with the human.  

The development of realistic artificial agents extended the toolset available to 
social psychological research (Schilbach et al. 2006), with more to come as those 
agents are embedded in virtual realities that are increasingly indistinguishable 
from "normal” reality. The breakthrough of virtualization has reconciled ecologi-
cal validity and experimental control, e.g. in the study of visual perception, spatial 
cognition and social interaction (Loomis et al. 1999; Dumas et al. 2014).  

A first level of social interaction is the mere presence of someone else (McCall 
and Blascovich 2009). Regarding this issue, virtual reality fits particularly well 
since it creates a sense of presence through mediated environments carrying dy-
namic animations of virtual characters (Sanchez-Vives and Slater 2005). Virtual 
characters are readily perceived as social agents and are thus capable of exerting 
social influence on humans (Biocca et al. 2003). Those virtual characters with 
strong similarity to real human interactions (Garau et al. 2005) can easily and val-
uably be combined with neuroimaging recording (Schilbach et al. 2006). 

Human-machine interaction was also used to investigate motor coordination: 
for instance a finger tapping study by Repp and Keller (2008) used a simple linear 
phase correction model to drive a virtual agent. It showed that subjects' behavior 
was systematically modulated by the computational parameters governing that 
agent. Reframed in a functional neuroimaging study by Fairhurst et al. (2013), the 
same paradigm uncovered some neural basis for motor synchronization and more 
importantly, for the socio-emotional consequences of different degrees of en-
trainment success. 

In the following, we describe another paradigm, the Human Dynamic Clamp 
(HDC), that embraces a continuous, multiscale and non-linear coupling between a 
human and a machine. By departing from information processing approaches and 
design-oriented modeling, the HDC offers: a) a new way to bridge the gap be-
tween theory, experiment and models; and b) an integrative solution to linking 
neural, behavioral, and social dynamics. HDC puts well established equations of 
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human coordination dynamics into the machine and studies real-time interactions 
between human and virtual partners. This opens up the possibility to explore and 
understand a wide variety of interactions (Dumas et al. 2014; Kelso et al. 2009; 
Kostrubiec et al. 2015). Ultimately, HDC may prove useful to establishing a much 
friendlier union of man and machine, based on sound interactional design, and 
perhaps it will even lead to the creation of a different kind of machine altogether. 

X.3 A Principled Based Virtual Partner 

The study of movement coordination is at the core of coordination dynamics and 
for the last 30-odd years the catchy phrase “let your fingers do the walking” has 
opened a rich experimental window into human behavior at both intra-individual 
and inter-individual levels. In a first move, it is important to clarify what we are 
looking at (Kelso et al. 2013). What is the behavior? What are the relevant varia-
bles and control parameters? These fundamental issues are addressed by uncover-
ing qualitative changes in collective variables from the system called order param-
eters (Haken 1983; Kelso 1990). Qualitative changes appear in two main flavors 
within the formalism of dynamical system theory: phase transitions and bifurca-
tions. Although they are both revealed in the phenomenon of transition in collec-
tive dynamics, the first is related to the switch between potential modes of behav-
ior accessible to the system, and the second concerns global changes of the 
system’s behavioral landscape. The landscape is usually described with a manifold 
in phase space (the frame of reference representing the relationship between vari-
ables associated with each degree of freedom). The challenge then is to uncover 
the most parsimonious model that can exhibit these qualitative changes, and fit its 
parameters according to the experimental data (see the discussion of Phenomeno-
logical Synergetics in Kelso et al. 1987). One key issue to keep in mind lies with 
the biological constraints that make it possible to link a model to actual physiolog-
ical mechanisms. In this perspective, it is fundamental to recognize that all models 
are false by definition. However, dynamical system theory offers good candidates 
for a universal class of models, giving the needed parsimony for elegant theory 
(Wilson 1979; Golubitsky and Stewart 2003).  
    Born from this aim was our recently developed Human Dynamic Clamp, a par-
adigm that took inspiration from the electrophysiological dynamic clamp (Sharp et 
al. 1993; Prinz et al. 2004) to allow real-time interaction between a human subject 
and a computational model. Using empirically-grounded models not only validat-
ed reciprocal and fully dynamical design protocols for experimenters to use, but 
also provided the opportunity to explore parameter ranges and perturbations that 
were out of reach of traditional experimental designs with live interactions. The 
symmetry between the human and the machine and the fact that they carry the 
same laws of coordination dynamics were keys to our approach (Kelso, et al. 
2009). The design of the virtual partner (VP) was grounded in the equations of 
motion for the coordination of the human neurobehavioral system. These laws 
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were obtained from accumulated studies over the last 30-odd years to describe 
how parts of the human body and brain self-organize, and to address the issue of 
self-reference, a condition leading to complexity. 

The first version of the Human Dynamic Clamp called Virtual Partner Interac-
tion (Kelso et al. 2009) embodied the Haken–Kelso–Bunz (HKB) model (Haken et 
al. 1985). The original form of HKB describes and predicts the coordination dy-
namics of two rhythmically moving fingers, with its characteristically complex 
phenomena such as multistability, phase transitions, hysteresis, critical slowing-
down and fluctuation enhancement (Kelso et al. 1987; Schöner and Kelso, 1988 
for reviews). Since then, the model has also been successfully validated experi-
mentally for the coordination between different limbs (e.g. Kelso and Jeka 1992), 
between people (e.g. Oullier et al. 2008) and even between species (Lagarde et al. 
2005), within unimodal and multimodal contexts (Lagarde and Kelso 2006). It has 
been supported by empirical evidence ranging from brain dynamics within (Kelso 
et al. 1992; Kelso et al. 1998) and between brain areas (Bressler and Kelso 2001; 
Jantzen et al. 2009; Tognoli and Kelso 2009; Tognoli and Kelso 2014), to coordi-
nation with external stimuli (Kelso, et al. 1990) and neural counterparts thereof 
(Jantzen et al. 2004; Oullier et al. 2004). This universal characteristic supports 
HKB as an ideal candidate for the Human Dynamic Clamp. 

In its original implementation, the VPI system was composed of a goniometer 
continuously digitizing the finger position of a human participant; a computational 
circuit simulating the HKB model; and a screen rendering the virtual partner’s be-
havior (see Fig 1A-B). The computational circuit calculates the position of VP 
continuously according to the differential equations of HKB (Fig 1B), and the re-
sulting dynamics is mapped onto a virtual avatar displayed on the screen. 
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Fig 1. The VPI system. (A) presents it key components (goniometer to trans-
duce human movement behavior and screen to display Virtual partner’s behav-
ior) from the human viewpoint. Task and coupling are outlined in (B). Human's 
behavior is digitized and fed into a computer whose software computes the cor-
responding position of the VP in real time, following a theoretical model of be-
havioral coordination —here HKB. The picture of the VP is updated on the 
screen (A) according to the output of the model. Data are stored for further 
study (C) to test hypotheses about the relationship between the agent’s proper-
ties, coupling parameters and emergent collective behavior. 

 
The HKB model at the collective level describes the equation of motion of the 

relative phase, a variable that distils the coordination of two oscillatory compo-
nents. In this form, the HKB model reads: 

 
�̇� = a sin𝜙 + 𝑏 sin 2𝜙 (eq. 1), where 𝜙 is the relative phase between human 

and VP’s finger position, and a and b are constants (for more details, see Fuchs 
and Kelso, 2009). 

 
However, since computers do not have direct access to the relative phase, the 

internal dynamics of VP is governed by the HKB model at the component level 
(see Fig 1B). In this form, two non-linearly coupled non-linear oscillators repre-
sent the interaction between the two fingers. The collective form in (eq. 1) can be 
derived from the equations at the component level (Fig 1B). At the component 
level, variables are no longer the relative phase but the individual finger positions 
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(and velocities by derivation). x and y represent VP’s and human’s finger posi-
tions, α, β and γ are constants associated with the intrinsic dynamics of VP, ω is 
VP’s pulsation (frequency), A and B are constants associated with the coupling 
from VP to human, and finally μ is a constant fixed to either +1 or -1, indicating 
VP’s preference for in-phase or anti-phase coordination. 

In the original study (Kelso et al. 2009), VP and human behaviors were chosen 
to be quite simple. Both partners were tasked to coordinate finger movements with 
one another, the human with the intention of achieving in-phase coordination with 
the VP (trying to synchronize his/her flexion and extension movements with 
VP’s). On the VP side, the parameter μ was set to -1, inducing a VP preference for 
anti-phase coordination and thus a goal opposite to human’s. Subjects were in-
structed to maintain a smooth and continuous rhythmic movement with their right 
index finger (flexion-extension) and to avoid stopping their movement at any time. 
Visual coupling was experimentally manipulated: from unidirectional in two con-
ditions (VP “perceives” human movement but human does not perceive VP’s be-
havior; or reciprocally), to bi-directional in another (both VP and human have ac-
cess to each other’s finger movement). VPI accommodated the whole set of 
behavioral coordination modes described by the HKB model. For instance, when 
VP and human participants did not have the same preferred movement frequency, 
their relative phase conformed to predictions by the extended version of HKB 
(Kelso, et al., 1990) and exhibited phase wrapping (not shown) or metastability 
(see Fig 1C). Pitting machine against human through opposing task demands is a 
way to enhance the formation of emergent behavior, and also allowed us to exam-
ine each partner’s individual contribution to the collective behavior. An intriguing 
outcome of the experiments was that subjects ascribed intentions to the machine, 
reporting that it was “messing” with them. A later study further suggested that VP 
elicits emotional experiences in human: subjects’ emotional arousal was greatest 
when VP interactions were (falsely) deemed to be with a human rather than with a 
machine (Zhang et al. 2016). 

In summary, Kelso et al. (2009)’s initial VPI experiment demonstrated the fea-
sibility of the Human Dynamic Clamp in the context of the continuous coordina-
tion of rhythmic movements. It uncovered unexpected behaviors, which were the-
oretically tested afterward. In the following, we show how to explore a new set of 
behaviors with other theoretical models of human behavior. 

X.4 Expanding the Behavioral Repertoire 

Embedding the HKB model in a Virtual Partner demonstrated that the explicit use 
of non-linear relational dynamics in an experimental paradigm can lead to new ob-
servations of emergent phenomena that linear models may miss out on. The Hu-
man Dynamic Clamp paradigm is about developing this idea by integrating other 
principle-based models grounded on canonical behaviors observed in experimental 
work. More complex behaviors can then be approached through the combination 
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of canonical models in a modular and hierarchical manner (Huys et al. 2013; 
Dumas et al. 2014) see also Fig 2. 

 

 
Fig 2. Examples of interactions between a human participant (red) and a VP 

embedding alternative models of relational dynamics (blue). A) the Excitator 
model (with parameters 𝒂 = 𝟎; 𝒃 = 𝟎;𝑨 = 𝟏;𝑩 = −𝟎. 𝟐; 𝝉 = 𝟏; 	𝝎 = 𝟏; dash 
line indicates switch from discrete to rhythmic movement in the human partici-
pant) B) the adaptive Excitator model (𝒂 = 𝟎; 𝒃 = 𝟎;𝑨 = 𝟏;𝑩 = −𝟎. 𝟐; 𝝉 =
𝟏; 	𝝎 = 𝟏;𝑲 = 𝟏).  C) a modified HKB with an intended relative phase of pi/2 
(𝒂 = 𝟎. 𝟔𝟒𝟏; 𝒃 = 𝟎. 𝟎𝟎𝟕𝟎𝟗;𝑨 = 𝟎. 𝟏𝟐;𝑩 = 𝟎. 𝟎𝟐𝟓; 𝑪 = 𝟏;𝝎 = 𝟏; dash line in-
dicates release of the VPI intentional forcing, i.e. switch to normal HKB model). 

X.4.a Discrete behavior: phase-space sculpture 

Although it is undeniable that living organisms rely both on rhythmic and discrete 
behaviors, the field of motor control has traditionally studied them separately. 
This led to two different ways of theoretically approaching and modeling them. 
While rhythmic movements have been extensively studied through the prism of 
dynamical systems, discrete movements’ modeling has  focused on equilibrium 
points or control signals (Danion 2011). Unifying rhythmic and discrete move-
ments is often posed to be a key theoretical challenge in behavioral science (Huys 
et al. 2008; Degallier and Ijspeert 2010). However, there is no specific need to in-
voke two separate mechanisms for discrete and rhythmic behavior (Kelso et al. 
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1980; Kugler et al. 1980; Huys and Jirsa 2010). For instance, Schöner (1990) ex-
tended the HKB model to the case of discrete bistable coordination by changing 
the intrinsic dynamics. Sternad et al. (2000) proposed another model for unimanu-
al coordination with two mutually inhibiting subsystems, each of which handled 
the discrete and the continuous cases respectively. 

Along similar lines, Jirsa and Kelso (2005) modeled discrete and rhythmic 
movement based on the phase flow topology of the so-called “Excitator” model 
(see also Huys et al. 2008). The Excitator defines a universal class of two-
dimensional dynamical systems able to exhibit limit cycles for rhythmic move-
ment, and fixed point dynamics for discrete movement. This model is based on 
topological considerations and is a parsimonious way to handle discrete and con-
tinuous behaviors simultaneously. Furthermore, in line with the approach of HKB 
modeling, the Excitator provides predictions regarding false-start phenomena that 
have been confirmed experimentally (Fink et al. 2009). Finally, it is a biologically 
realistic model since it follows the self-excitable property that the FitzHugh-
Nagumo model drew from single neurons (FitzHugh 1961). 

The structure of the model contains three characteristics related to topological 
constraints: boundedness of the trajectory, existence of a separatrix marking the 
boundary between two separate regimes in phase space, and existence of a limit 
cycle for rhythmic movements and of one or two stable fixed point(s) for mono-
stable and bi-stable discrete movements respectively. 

The equations read as follows: @
𝑥Ḃ = 𝜔E𝑥B + 𝑥F − 𝑔B(𝑥B)I𝜏

𝑥Ḟ = −𝜔 E𝑥B − 𝑎 + 𝑔FE𝑥B,𝑥FI − 𝐼I 𝜏⁄
 (eqs. 2)	

where 𝑥B and 𝑥F are internal variables of the oscillator, 𝜔 is the pulsation (fre-
quency) of VP, 𝑎 the term controlling the position of the separatrix, 𝑏 the term 
controlling the angle of the separatrix, 𝐼	an instantaneous external input, and 𝜏 the 
time constant of the system. 

Note that the choice of 𝑔B and 𝑔F is not fixed but must nevertheless guarantee 
the boundedness of the system so that the system belongs to the class of self-
excitable systems. Here we take 𝑔B(𝑥B) =

B
O
𝑥BO and 𝑔FE𝑥B,𝑥FI = −𝑏𝑥F . (eq. 3) 

When this is put in unidimensional form, we retain the same coupling terms as 
HKB model’s. The coupling causes either convergence or divergence of the trajec-
tories in phase space depending on initial conditions. Since trajectories are bound-
ed, constraints lead to in-phase or anti-phase modes of coordination (for more de-
tails, see Jirsa and Kelso 2005). 

Implementation of the Excitator dynamics in an HDC is quite straightforward: 
one only needs to substitute the relevant equations (eqs. 2) in the software control-
ling VP’s behavior. Note that these equations introduce a new term of importance: 
parameter I allows to modify the phase flow according to an external input. An ex-
ternal input can originate from the experimenter or the human partner him/herself. 
It is a key component for modeling discrete behaviors, which rely on external in-
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formation and is non-autonomous in a mathematical sense. The introduction of the 
new variable allows VP and human to coordinate diverse movements that range 
from simple rhythms to discrete actions. Figure 2A presents an interaction be-
tween a human and a VP governed by the Excitator model, and shows a transition 
from discrete movement (flexions and extensions interrupted by quiescent behav-
ior) to continuous movement.  

X.4.b Adaptive behavior: parameter dynamics and modularity  

The Excitator model shows how a single dynamical system may give rise to dif-
ferent behavioral modes of coordination between human and virtual partner. How-
ever, each mode required a different set of parameters. Once those parameters are 
fixed, the differential equations set the functional structure of the system for a spe-
cific behavioral context. But structure, function and dynamics are not separated in 
nature; everything is constantly evolving on different timescales (Kelso 1995; 
Bressler and Tognoli 2006). In biology, organisms change their own behavior and 
learn new ones to better face the world, and interact with their peers in a more ef-
fective manner. Robert Rosen even associated adaptation as the most characteris-
tic property of living things (Rosen 1991). The process of adaptation is ubiquitous 
in so-called complex adaptive systems that may also encompass physical or artifi-
cial aspects (Holland 1992). In the case of the brain, it is not surprising to observe 
such ongoing anticipation continuously (Kinsbourne and Jordan 2009). Adaptation 
is especially important in social behavior, for instance mimicry at the morphologi-
cal level (Chartrand and Bargh 1999) or interactional synchrony during coopera-
tive imitation and skill learning (Fogel 1993). 

Coordination may be seen as a subtle blend of reaction and adaptation to the 
other (Engstrøm et al. 1996). Whereas reaction takes place at a given time t, adap-
tation builds up over time. For instance, humans may have a preferred movement 
frequency but they can adapt to different partners by slowing down or speeding up 
their movements. In the case of the Human Dynamic Clamp, frequency adjust-
ment is a good candidate to address adaptive behavior in a manner that is fully 
compatible with the previously described systems, and uses the same formalism. 
Basically, frequency adaptation requires a new equation in the system of differen-
tial equations that manages the rate of change of frequency ω. At a more concep-
tual level, it fits with the idea that adaptation depends on the system’s ongoing in-
trinsic dynamics. Furthermore, adaptation can enhance the realism of the 
interaction, by expanding beyond an instantaneous coordination with the position 
of a finger or the phase of a movement.  

Different strategies for modeling frequency adaptation have been proposed. In 
a pure Artificial Intelligence (AI) tradition, a specific module detects the frequen-
cy of the human partner which then controls VP’s actual frequency. This shows 
that it is possible to successfully design an artificial device that is able to do the 
job. In the Bayesian approach, adaptation is error-based and relies on reinforce-
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ment learning (Peters and Schaal 2006). This approach is inspired from real phys-
iological processes. In predictive coding, adaptation of model parameters is asso-
ciated with Hebbian and synaptic plasticity in the brain (Friston 2010). Other bot-
tom-up strategies have been developed in the fields of signal processing (Kohonen 
1982) and robotics (Harvey et al. 2005). Here we continue to follow the strategy 
of Coordination Dynamics and Dynamical System Theory. That approach was 
shown to better account for frequency adaptation in fireflies (Ermentrout 1999) 
and in tempo adaptation to musical rhythms (Large and Jones 1999; see also 
Konvalinka et al. 2009). In contrast with the AI approach, it is worth noting that 
the equations stay totally continuous and do not relate to an artificial measurement 
of the human frequency. This illustrates how adaptation relies on parameter dy-
namics according to the scale of observation (Saltzman and Munhall 1992). 

Following Righetti and colleagues (2006; 2009), we introduce frequency adap-
tation through the addition of a new dimension—related to ω—in the set of differ-

ential equations:	P
�̇� = 𝑓R(𝑥, 𝑣, 𝜔) + 𝐾𝐹(𝑡)

�̇� = 𝑓W(𝑥, 𝑣, 𝜔)
 and  �̇� = ±𝐾𝐹(𝑡) Y

ZR[\W[
 (eqs. 4) 

 
where 𝐾 is the coupling strength of the adaptation, and 𝐹(𝑡) is the coupling part of 
the system. Figure 2B shows how a VP governed by the extended Excitator equa-
tions is able to follow changes in movement frequency. Addition of a third dimen-
sion also leads to unstable dynamics, less predictable from the human point of 
view. This may be associated with the emergence of chaotic regimes that are typi-
cal of 3-dimensional nonlinear dynamical systems (Strogatz 2008). Such unpre-
dictability can be associated with a form of intention (Freeman 1999): a model of 
intentional behavior could be further designed. That is what we will see in the next 
section.  

X.4.c Intentional behavior: symmetry breaking and forcing 

In the case of an adaptive system, we have seen that adding a third dimension ren-
ders the dynamics less predictable. The system is nevertheless not random and ap-
pears more autonomous while still being governed by deterministic rules. This 
balance between autonomy and coupling creates successful agency illusion and 
can trigger an attribution of intention to the human observer (Barandiaran et al. 
2009; Aucouturier and Ikegami 2009). Keeping in mind that the Human Dynamic 
Clamp aims at operationalizing models for experimental purposes, a teleonomic 
system is not adequate, because its intention is not directly controllable by the ex-
perimenter. 

In the initial VPI experiment (Kelso et al. 2009), the control parameter μ (eq. 1) 
modulated intention attribution in some participants. In general, adopting a princi-
ple-based modeling requires redefining the boundary conditions of the model. Un-
til now, we were dealing with spontaneous coordination. It has been shown exper-
imentally, however, that intention affects the spontaneous potential landscape by 
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stabilizing and destabilizing specific dynamic patterns (Kelso et al. 1988) includ-
ing at the brain level (De Luca et al. 2010). The former empirical findings moti-
vated an extension of the HKB model (Schöner and Kelso 1988; see also Dumas 
et al. 2014) through the introduction of new term in the relative phase equation: 
�̇� = a sin𝜙 + 𝑏 sin 2𝜙 + 𝑐 sin𝜓 − 𝜙   (eq. 5) 

 
where 𝜓 is the intended relative phase. By incorporating an intentional forcing 

term c which stabilizes or destabilizes particular patterns, the model was able to 
explain experimental observations related to intentional switching between in-
phase and anti-phase.  

 
We recently generalized the Schöner and Kelso coupling model (Dumas et al. 

2014), so the intended relative phase angle	𝜓	can take on any value between −𝜋 
and +𝜋: 𝐶int = −𝐶(𝑐𝑜𝑠(𝜓)(�̇� − �̇�) + 𝑠𝑖𝑛(𝜓)𝜔𝑦) (eq. 6). This modification of 
VP dynamics makes it possible to direct a collective behavior towards any desired 
pattern of coordination (see Fig 2C). This offers new experimental perspectives, 
e.g. to study how new dynamical patterns are learned on top of a subject’s sponta-
neous behavioral repertoire (Kostrubiec et al. 2015). 

X.5 Conclusion 

In this chapter, we have seen how a hybrid system called the Human Dynamic 
Clamp allows for real-time interaction between humans and virtual partners, based 
on the equations of coordination dynamics built originally from HKB and its ex-
tensions. A key aspect is that the human and its virtual partner are reciprocally 
coupled: the human acquires information about the partner’s behavior through 
perception, and the virtual partner continuously detects the human’s behavior 
through the input of sensors. Our approach is analogous to that of the original dy-
namic clamp used to study the dynamics of interactions between neurons, but now 
scaled up to the level of behaving humans. This principle-based approach offers a 
new paradigm for the study of social interaction. While stable and intermittent co-
ordination behaviors emerged that had previously been observed in ordinary hu-
man social interactions, we also discovered novel behaviors or strategies that had 
never been observed in human social behavior. Those novel behaviors pertained to 
unexplored regions of the theoretical model and were possible ways of coordina-
tion for people to interact with each other. Such emergence of novel behaviors 
demonstrates the scientific potential of HDC as a human-machine framework. 
Modifying the dynamics of the virtual partner with the purpose of inducing a de-
sired human behavior, such as learning a new skill or as a tool for therapy and re-
habilitation, is one of several applications of VPI.  

HDC allows to study social interaction with more experimental control than 
other recent social neuroscience methods (e.g. hyperscanning); it is also a test bed 
for theoretical models. HDC moves away from simple protocols in which systems 
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are ‘poked’ by virtue of ‘stimuli’ to address more complex, reciprocally connected 
systems where meaningful interactions occur. Thus, the Human Dynamic Clamp 
supports the development of a computational social neuroscience where theory, 
experiment and modeling work hand-in-hand across neural, behavioral and social 
scales (Tognoli et al. in press).  
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