J. L. Casanova and L. Abel, The genetic theory of infectious diseases: a brief history and selected illustrations, Annu Rev Genomics Hum Genet, vol.14, pp.215-258, 2013.

M. Benoit, B. Desnues, and J. L. Mege, Macrophage polarization in bacterial infections, J Immunol, vol.181, pp.3733-3742, 2008.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, pp.958-69, 2008.

M. L. Güler, J. D. Gorham, and C. S. Hsieh, Genetic susceptibility to Leishmania: IL-12 responsiveness in T H 1 cell development, Science, vol.271, pp.984-991, 1996.

S. Roque, C. Nobrega, R. Appelberg, and M. Correia-neves, IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 mice to Mycobacterium avium infection and influences efficacy of antibiotic therapy, J Immunol, vol.178, pp.8028-8063, 2007.

T. Liu, H. Nishimura, T. Matsuguchi, and Y. Yoshikai, Differences in interleukin-12 and -15 production by dendritic cells at the early stage of Listeria monocytogenes infection between BALB/c and C57 BL/6 mice, Cell Immunol, vol.202, pp.31-40, 2000.

C. D. Mills, M1 and M2 macrophages: oracles of health and disease, Crit Rev Immunol, vol.32, pp.463-88, 2012.

C. Blanchet, J. Jaubert, and E. Carniel, Mus spretus SEG/Pas mice resist virulent Yersinia pestis, under multigenic control, Genes Immun, vol.12, pp.23-30, 2011.

C. E. Demeure, C. Blanchet, and C. Fitting, Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice, J Infect Dis, vol.205, pp.134-177, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02073619

M. M. Marketon, R. W. Depaolo, K. L. Debord, B. Jabri, and O. Schneewind, Plague bacteria target immune cells during infection, Science, pp.1-3, 2005.

C. Pujol and J. B. Bliska, Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae, Clin Immunol, vol.114, pp.216-242, 2005.

F. Nomura, S. Akashi, and Y. Sakao, Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression, J Immunol, vol.164, pp.3476-3485, 2000.

A. J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook, Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation, J Immunol, vol.178, pp.5245-52, 2007.

R. W. Depaolo, F. Tang, and I. Kim, Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis, Cell Host Microbe, vol.4, pp.350-61, 2008.

G. R. Cornelis, The Yersinia Ysc-Yop 'type III' weaponry, Nat Rev Mol Cell Biol, vol.3, pp.742-52, 2002.

M. S. Hayden and S. Ghosh, Shared principles in NF-?B signaling, Cell, vol.132, pp.344-62, 2008.

J. L. Swantek, M. H. Cobb, and T. D. Geppert, Jun N-terminal kinase/ stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-?) translation: glucocorticoids inhibit TNF-? translation by blocking JNK/SAPK, Mol Cell Biol, vol.17, pp.6274-82, 1997.

?. Jid-;-?-pachulec, , p.216, 2017.

Y. Yang, S. C. Kim, and T. Yu, Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses, Mediators Inflamm, p.352371, 2014.

A. Agrawal, S. Dillon, T. L. Denning, and B. Pulendran, ERK1 -/-mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis, J Immunol, vol.176, pp.5788-96, 2006.

M. P. Sory and G. R. Cornelis, Translocation of a hybrid YopEadenylate cyclase from Yersinia enterocolitica into HeLa cells, Mol Microbiol, vol.14, pp.583-94, 1994.

T. Bergsbaken, S. L. Fink, and B. T. Cookson, Pyroptosis: host cell death and inflammation, Nat Rev Microbiol, vol.7, pp.99-109, 2009.

Y. Zheng, S. Lilo, P. Mena, and J. B. Bliska, YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense, PLoS One, vol.7, p.36019, 2012.

J. M. Weinberg, A. Bienholz, and M. A. Venkatachalam, The role of glycine in regulated cell death, Cell Mol Life Sci, vol.73, pp.2285-308, 2016.

M. T. Silva, Secondary necrosis: the natural outcome of the complete apoptotic program, FEBS Lett, vol.584, pp.4491-4500, 2010.

K. N. Peters, M. O. Dhariwala, H. Hanks, J. M. Brown, C. R. Anderson et al., Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague, PLoS Pathog, vol.9, p.1003324, 2013.

Y. Zhang, A. T. Ting, K. B. Marcu, and J. B. Bliska, Inhibition of MAPK and NF-?B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia, J Immunol, vol.174, pp.7939-7988, 2005.

S. R. Himes, D. P. Sester, T. Ravasi, S. L. Cronau, T. Sasmono et al., The JNK are important for development and survival of macrophages, J Immunol, vol.176, pp.2219-2247, 2006.

X. H. Lai, Y. Xu, X. M. Chen, and Y. Ren, Macrophage cell death upon intracellular bacterial infection, Macrophage (Houst), vol.2, p.779, 2015.

R. Nakajima and R. R. Brubaker, Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha, Infect Immun, vol.61, pp.23-31, 1993.

P. A. Price, J. Jin, and W. E. Goldman, Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation, Proc Natl Acad Sci U S A, vol.109, pp.3083-3091, 2012.

M. A. Bogoyevitch, K. R. Ngoei, T. T. Zhao, Y. Y. Yeap, and D. C. Ng, c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges, Biochim Biophys Acta, vol.1804, pp.463-75, 2010.

J. Zhu, G. Krishnegowda, and D. C. Gowda, Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-kappaB pathways for the expression of proinflammatory cytokines and nitric oxide, J Biol Chem, vol.280, pp.8617-8644, 2005.

D. Weng, R. Marty-roix, and S. Ganesan, Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death, Proc Natl Acad Sci U S A, vol.111, pp.7391-7397, 2014.

C. M. Cuda, A. V. Misharin, and S. Khare, Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner, Arthritis Res Ther, vol.17, p.291, 2015.

L. Chevallier, C. Blanchet, and J. Jaubert, Resistance of Mus spretus SEG/Pas mice to virulent Yersinia pestis requires at least four genetic factors, Genes and Immunity, vol.14, pp.35-41, 2012.

R. W. Frenck, G. Sarman, T. E. Harper, and E. S. Buescher, The ability of recombinant murine granulocyte-macrophage colony-stimulating factor to protect neonatal rats from septic death due to Staphylococcus aureus, J Infect Dis, vol.162, pp.109-123, 1990.

L. Bo, F. Wang, J. Zhu, J. Li, and X. Deng, Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis, Crit Care, vol.15, p.58, 2011.

B. Mathias, B. E. Szpila, F. A. Moore, P. A. Efron, and L. L. Moldawer, A review of GM-CSF therapy in sepsis, Medicine (Baltimore), vol.94, p.2044, 2015.

L. Dejager, I. Pinheiro, and L. Puimège, Increased glucocorticoid receptor expression and activity mediate the LPS resistance of SPRET/EI mice, J Biol Chem, vol.285, pp.31073-86, 2010.

L. Dejager, C. Libert, and X. Montagutelli, Thirty years of Mus spretus: a promising future, Trends Genet, vol.25, pp.234-275, 2009.

J. A. Hamilton, Colony-stimulating factors in inflammation and autoimmunity, Nat Rev Immunol, vol.8, pp.533-577, 2008.

D. M. Klinman, J. W. Van-der-meer, L. A. Joosten, N. Riksen, and M. G. Netea, Trained immunity: a smart way to enhance innate immune defence, Expert Opin Biol Ther, vol.4, pp.40-44, 2004.

M. Gupta, C. Spiropoulou, and P. E. Rollin, Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro, Virology, vol.364, pp.45-54, 2007.

L. Gulati, U. C. Chaturvedi, and A. Mathur, Depressed macrophage functions in dengue virus-infected mice: role of the cytotoxic factor, Br J Exp Pathol, vol.63, pp.194-202, 1982.

A. K. Mcelroy and N. St, Rift Valley fever virus inhibits a pro-inflammatory response in experimentally infected human monocyte derived macrophages and a pro-inflammatory cytokine response may be associated with patient survival during natural infection, Virology, vol.422, pp.6-12, 2012.