B. A. Knisbacher, D. Gerber, and E. Y. Levanon, DNA Editing by APOBECs: A Genomic Preserver and Transformer, Trends Genet, vol.32, pp.16-28, 2016.
DOI : 10.1016/j.tig.2015.10.005

S. G. Conticello, C. J. Thomas, S. K. Petersen-mahrt, and M. S. Neuberger, Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases, Mol Biol Evol, vol.22, pp.367-377, 2005.

R. S. Larue, Guidelines for Naming Non-Primate APOBEC3 Genes and Proteins, J Virol, vol.83, pp.494-497, 2008.

R. S. Larue, The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals, BMC Mol Biol, vol.9, 2008.

C. Munk, A. Willemsen, and I. G. Bravo, An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals, BMC Evol Biol, vol.12, p.71, 2012.

V. Caval, Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme, Nucleic Acids Res, vol.43, pp.9340-9349, 2015.

, Scientific RepoRts |, vol.9, 2019.

V. Caval, R. Suspène, M. Shapira, J. P. Vartanian, and S. Wain-hobson, A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3?UTR enhances chromosomal DNA damage, Nat Commun, vol.5, p.5129, 2014.
DOI : 10.1038/ncomms6129

URL : https://www.nature.com/articles/ncomms6129.pdf

S. A. Roberts, An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers, Nat Genet, vol.45, pp.970-976, 2013.
DOI : 10.1038/ng.2702

URL : http://europepmc.org/articles/pmc3789062?pdf=render

R. Suspène, Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism, Proc Natl Acad Sci, vol.108, pp.4858-4863, 2011.

L. B. Alexandrov, Signatures of mutational processes in human cancer, Nature, vol.500, pp.415-421, 2013.

S. Nik-zainal, Mutational Processes Molding the Genomes of 21 Breast Cancers, Cell, vol.149, pp.979-993, 2012.
DOI : 10.1016/j.cell.2012.04.024

URL : https://doi.org/10.1016/j.cell.2012.04.024

E. D. Pleasance, A small-cell lung cancer genome with complex signatures of tobacco exposure, Nature, vol.463, pp.184-190, 2010.

P. J. Stephens, The landscape of cancer genes and mutational processes in breast cancer, Nature, vol.486, pp.400-404, 2012.

M. A. Carpenter, Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A, J Biol Chem, vol.287, pp.34801-34808, 2012.
DOI : 10.1074/jbc.m112.385161

URL : http://europepmc.org/articles/pmc3464582?pdf=render

M. F. Denissenko, J. X. Chen, M. S. Tang, and G. P. Pfeifer, Cytosine methylation determines hot spots of DNA damage in the human P53 gene, Proc Natl Acad Sci, vol.94, pp.3893-3898, 1997.

R. Suspène, M. M. Aynaud, J. P. Vartanian, and S. Wain-hobson, Efficient deamination of 5-methylcytidine and 5-substituted cytidine residues in DNA by human APOBEC3A cytidine deaminase, PLoS ONE, vol.8, p.63461, 2013.

M. B. Burns, APOBEC3B is an enzymatic source of mutation in breast cancer, Nature, vol.494, pp.366-370, 2013.

J. Vasudevan and A. A. , APOBEC3B Activity Is Prevalent in Urothelial Carcinoma Cells and Only Slightly Affected by LINE-1 Expression, Front Microbiol, vol.9, p.2088, 2018.

S. Landry, I. Narvaiza, D. C. Linfesty, and M. Weitzman, APOBEC3A can activate the DNA damage response and cause cell-cycle arrest, EMBO Reports, vol.12, pp.444-450, 2011.

A. Komatsu, K. Nagasaki, M. Fujimori, J. Amano, and Y. Miki, Identification of novel deletion polymorphisms in breast cancer, Int J Oncol, vol.33, pp.261-270, 2008.

J. Long, A Common Deletion in the APOBEC3 Genes and Breast Cancer Risk, J Natl Cancer Inst, vol.105, pp.573-579, 2013.

D. Xuan, APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry, Carcinogenesis, vol.34, pp.2240-2243, 2013.

T. Zhang, Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma, Hum Mol Genet, vol.22, pp.1262-1269, 2012.

S. Nik-zainal, Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer, Nat Genet, vol.46, pp.487-491, 2014.

P. Lamy, Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets in Urothelial Carcinoma, Cancer Res, vol.76, pp.5894-5906, 2016.

V. Caval, R. Suspène, J. P. Vartanian, and S. Wain-hobson, Orthologous mammalian APOBEC3A cytidine deaminases hypermutate nuclear DNA, Mol Biol Evol, vol.31, pp.330-340, 2014.

R. Peto, F. J. Roe, P. N. Lee, L. Levy, and J. Clack, Cancer and ageing in mice and men, Br J Cancer, vol.32, pp.411-426, 1975.

L. M. Abegglen, Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans, JAMA, vol.314, pp.1850-1860, 2015.

M. Sulak, TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants, Elife, vol.5, 2016.

M. Henry, C. Terzian, M. Peeters, S. Wain-hobson, and J. P. Vartanian, Evolution of the primate APOBEC3A cytidine deaminase gene and identification of related coding regions, PLoS ONE, vol.7, p.30036, 2012.

B. K. Thielen, Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms, J Biol Chem, vol.285, pp.27753-27766, 2010.

B. Lamglait, A. Joris, A. Romey, L. Bakkali-kassimi, and K. Lemberger, Fatal Encephalomyocarditis Virus Infection in an African Savanna Elephant (Loxodonta Africana) in a French Zoo, J Zoo Wildl Med, vol.46, pp.393-396, 2015.

R. Suspène, M. Henry, S. Guillot, S. Wain-hobson, and J. P. Vartanian, Recovery of APOBEC3-edited human immunodeficiency virus G-> A hypermutants by differential DNA denaturation PCR, J Gen Virol, vol.86, pp.125-129, 2005.

M. M. Aynaud, Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A, J Biol Chem, vol.287, pp.39182-39192, 2012.

B. Mussil, Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to DNA damage response and apoptosis, PLoS ONE, vol.8, p.73641, 2013.

G. Berger, APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells, PLoS Pathog, vol.7, p.1002221, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02122414

J. P. Vartanian, D. Guétard, M. Henry, and S. Wain-hobson, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions, Science, vol.320, pp.230-233, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00363398

R. Suspène, Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo, Proc Natl Acad Sci, vol.102, pp.8321-8326, 2005.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J Biol Chem, vol.273, pp.5858-5868, 1998.

J. A. Westrich, Human Papillomavirus 16 E7 Stabilizes APOBEC3A Protein by Inhibiting Cullin 2-Dependent Protein Degradation, J Virol, vol.92, pp.1318-1335, 2018.

, Scientific RepoRts |, vol.9, 2019.