L. H. Harrison, The Global Meningococcal Initiative: recommendations for reducing the global burden of meningococcal disease, Vaccine, vol.29, pp.3363-3371, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02083011

T. J. John, An overview of meningococcal disease in India: knowledge gaps and potential solutions, Vaccine, vol.31, pp.2731-2737, 2013.

M. A. Sáfadi, The current situation of meningococcal disease in Latin America and recommendations for a new case definition from the Global Meningococcal Initiative, Expert Review of Vaccines, vol.12, pp.903-915, 2013.

R. Borrow, Safe laboratory handling of Neisseria meningitidis, Journal of Infection, vol.68, pp.305-312, 2014.

N. K. Shrestha, Infectious Disease Emergencies, Cleveland Clinic Center for Continuing Education, 2015.

, Centers for Disease Control and Prevention. Meningococcal disease (Neisseria meningitidis). 2015 case definition. CDC website, 2015.

, European Centre for Disease Prevention and Control. Meningococcal disease, invasive (Neisseria meningitidis), 2015.

A. Department-of-health and . Government, Meningococcal disease (invasive) surveillance case definition -V1, 2015.

P. Olcen and H. Fredlund, Isolation, culture, and identification of meningococci from clinical specimens, Methods in Molecular Medicine, vol.67, pp.9-21, 2001.

, Laboratory methods for diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae, Centers for Disease Control and Prevention

, Accessed 10, 2015.

M. A. Sobanski, R. A. Barnes, and W. T. Coakley, Detection of meningococcal antigen by latex agglutination, Methods in Molecular Medicine, vol.67, pp.41-59, 2001.

S. A. Cunningham, J. M. Mainella, and R. Patel, Misidentification of Neisseria polysaccharea as Neisseria meningitidis with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry, Journal of Clinical Microbiology, vol.52, pp.2270-2271, 2014.

, Guidance for public health management of meningococcal disease in the UK. HPA website, Health Protection Agency Meningococcus and Haemophilus Forum, 2015.

K. A. Cartwright, J. M. Stuart, and P. M. Robinson, Meningococcal carriage in close contacts of cases, Epidemiology and Infection, vol.106, pp.133-141, 1991.

J. M. Collard, A five-year field assessment of rapid diagnostic tests for meningococcal meningitis in Niger by using the combination of conventional and real-time PCR assays as a gold standard, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.108, pp.6-12, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01333084

A. Agnememel, Development and evaluation of a dipstick diagnostic test for Neisseria meningitidis serogroup X, Journal of Clinical Microbiology, vol.53, pp.449-454, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02013275

S. Chanteau, New rapid diagnostic tests for Neisseria meningitidis serogroups A, PLoS Medicine, vol.3, p.337, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00136162

E. B. Kaczmarski, Creating a national service for the diagnosis of meningococcal disease by polymerase chain reaction, Communicable Diseases Public Health, vol.1, pp.54-56, 1998.

P. A. Bryant, Prospective study of a real-time PCR that is highly sensitive, specific, and clinically useful for diagnosis of meningococcal disease in children, Journal of Clinical Microbiology, vol.42, pp.2919-2925, 2004.

, European Centre for Disease Prevention and Control. Surveillance of invasive bacterial diseases in Europe, 2011.

D. E. Bennett and M. T. Cafferkey, Consecutive use of two multiplex PCR-based assays for simultaneous identification and determination of capsular status of nine common Neisseria meningitidis serogroups associated with invasive disease, Journal of Clinical Microbiology, vol.44, pp.1127-1131, 2006.

D. Thomas and J. , sodC-based real-time PCR for detection of Neisseria meningitidis, PLoS ONE, vol.6, p.19361, 2011.

S. T. Hedberg, Real-time PCR detection of five prevalent bacteria causing acute meningitis, Microbiologica, et Immunologica Scandinavica, vol.117, pp.856-860, 2009.

P. Mölling, Direct and rapid identification and genogrouping of meningococci and porA amplification by LightCycler PCR, Journal of Clinical Microbiology, vol.40, pp.4531-4535, 2002.

M. K. Taha, Interlaboratory comparison of PCRbased identification and genogrouping of Neisseria meningitidis, Journal of Clinical Microbiology, vol.43, pp.144-149, 2005.

H. B. Bratcher, A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes, BMC Genomics, vol.15, p.1138, 2014.

C. Brehony, K. A. Jolley, and M. C. Maiden, Multilocus sequence typing for global surveillance of meningococcal disease, FEMS Microbiology Reviews, vol.31, pp.15-26, 2007.

A. J. Fox, M. K. Taha, and U. Vogel, Standardized nonculture techniques recommended for European reference laboratories, FEMS Microbiology Reviews, vol.31, pp.84-88, 2007.

K. A. Jolley, C. Brehony, and M. C. Maiden, Molecular typing of meningococci: recommendations for target choice and nomenclature, FEMS Microbiology Reviews, vol.31, pp.89-96, 2007.

J. Lucidarme, Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine, Clinical and Vaccine Immunology, vol.17, pp.919-929, 2010.

K. A. Jolley and M. C. Maiden, Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar, Eurosurveillance, vol.18, p.20379, 2013.

U. Vogel, Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment, Lancet Infectious Diseases, vol.13, pp.416-425, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02093031

J. Donnelly, Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.19490-19495, 2010.

A. Kelly, Gene variability and degree of expression of vaccine candidate factor H binding protein in clinical isolates of Neisseria meningitidis, Microbiologica, et Immunologica Scandinavica, vol.121, pp.56-63, 2013.

E. Hong, Target gene sequencing to define the susceptibility of Neisseria meningitidis to ciprofloxacin, Antimicrobial Agents and Chemotherapy, vol.57, pp.1961-1964, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02089320

M. K. Taha, Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis, Antimicrobial Agents and Chemotherapy, vol.51, pp.2784-2792, 2007.

M. K. Taha, Multicenter study for defining the breakpoint for rifampin resistance in Neisseria meningitidis by rpoB sequencing, Antimicrobial Agents and Chemotherapy, vol.54, pp.3651-3658, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02085459

R. Gasparini and D. Panatto, Meningococcal glycoconjugate vaccines, Human Vaccines, vol.7, pp.170-182, 2011.