E. F. Funding, Labex Who am I, Canc erop^ ole Ile de France (ORFOCRISE PME-2015) and Fondation pour la Recherche M edicale (ING20160435205)

C. , acknowledges funding by Institut Pasteur, Institut National du Cancer (INCa 2015-135), Fondation pour la Recherche M edicale (Equipe FRM DEQ20150331762), and the Inception program (ANR Investissement d'Avenir

. Orcid-emmanuelle-fabre,

J. E. Haber, Genome stability: DNA repair and recombination. London: Garland Science, 2014.

O. Inbar and M. Kupiec, Homology search and choice of homologous partner during mitotic recombination, Mol Cell Biol, vol.19, pp.4134-4176, 1999.

N. Rudin and J. E. Haber, Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences, Mol Cell Biol, vol.8, pp.3918-3946, 1988.

N. Agmon, B. Liefshitz, and C. Zimmer, Effect of nuclear architecture on the efficiency of double-strand break repair, Nat Cell Biol, vol.15, pp.694-699, 2013.

A. Barzel and M. Kupiec, Finding a match: how do homologous sequences get together for recombination?, Nat Rev Genet, vol.9, pp.27-37, 2008.

A. Taddei, H. Schober, and S. M. Gasser, The budding yeast nucleus, Cold Spring Harb Perspect Biol, vol.2, p.612, 2010.

C. Zimmer and E. Fabre, Principles of chromosomal organization: lessons from yeast, J Cell Biol, vol.192, pp.723-733, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02079552

A. B. Berger, G. G. Cabal, and E. Fabre, High-resolution statistical mapping reveals gene territories in live yeast, Nat Methods, vol.5, pp.1031-1037, 2008.

B. Albert, J. Mathon, and A. Shukla, Systematic characterization of the conformation and dynamics of budding yeast chromosome XII, J Cell Biol, vol.202, pp.201-211, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01682609

T. Cremer and M. Cremer, Chromosome territories, Cold Spring Harb Perspect Biol, vol.2, p.3889, 2010.

P. Th-erizols, T. Duong, and B. Dujon, Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres, Proc Natl Acad Sci, vol.107, pp.2025-2055, 2010.

B. Albert, J. Mathon, and A. Shukla, Systematic characterization of the conformation and dynamics of budding yeast chromosome XII, J Cell Biol, vol.202, pp.201-211, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01682609

, Rabl Cerng C ? uber Zellteilung. Morphol Jahrb, vol.10, pp.214-330, 1885.

J. Brickner, Genetic and epigenetic control of the spatial organization of the genome, Mol Biol Cell, vol.28, pp.364-369, 2017.

W. F. Marshall, A. Straight, and J. F. Marko, Interphase chromosomes undergo constrained diffusional motion in living cells, Curr Biol, vol.7, issue.06, p.412, 1997.

P. Heun, T. Laroche, and K. Shimada, Chromosome Dynamics in the Yeast Interphase Nucleus. Science, vol.294, pp.2181-2186, 2001.

G. G. Cabal, A. Genovesio, and S. Rodriguez-navarro, SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope, Nature, vol.441, pp.770-773, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00207343

H. Hajjoul, J. Mathon, and H. Ranchon, High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome, Genome Res, vol.23, pp.1829-1867, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01053149

J. Min-e-hattab, V. Recamier, and I. Izeddin, Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage, Mol Biol Cell, 2017.

M. P. Backlund, R. Joyner, and K. Weis, Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the Double-Helix Point Spread Function microscope, Mol Biol Cell, vol.25, pp.3619-3629, 2014.

M. H. Hauer, A. Seeber, and V. Singh, Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates, Nat Struct Mol Biol, vol.24, pp.99-107, 2017.

S. Herbert, A. Brion, and J. M. Arbona, Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast, EMBO J, vol.36, pp.2595-2603, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02078756

C. H. Chuang, A. E. Carpenter, and B. Fuchsova, Longrange directional movement of an interphase chromosome site, Curr Biol, vol.16, pp.825-831, 2006.

N. W. Cho, R. L. Dilley, and M. A. Lampson, Interchromosomal homology searches drive directional ALT telomere movement and synapsis, Cell, vol.159, pp.108-121, 2014.

J. S. Verdaasdonk, P. A. Vasquez, and R. M. Barry, Centromere tethering confines chromosome domains, Mol Cell, vol.52, pp.819-850, 2013.

H. Wong, J. Arbona, and C. Zimmer, How to build a yeast nucleus, Nucleus, vol.4, issue.5, pp.361-366, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02079519

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm, Phys Rev Lett, vol.104, p.238102, 2010.

P. Heun, T. Laroche, and M. K. Raghuraman, The positioning and dynamics of origins of replication in the budding yeast nucleus, J Cell Biol, vol.152, pp.385-400, 2001.

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Nonthermal ATPdependent fluctuations contribute to the in vivo motion of chromosomal loci, Proc Natl Acad Sci U S A, vol.109, pp.7338-7381, 2012.

M. Spichal, A. Brion, and S. Herbert, Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast, J Cell Sci, vol.129, pp.681-692, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01419905

J. Lawrimore, T. M. Barry, and R. M. Barry, Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage, Mol Biol Cell, vol.28, pp.1701-1711, 2017.

Z. Duan, M. Andronescu, and K. Schutz, A three-dimensional model of the yeast genome, Nature, vol.465, pp.363-367, 2010.

M. Marbouty, M. Cournac, and A. , Filling annotation gaps in yeast genomes using genome-wide contact maps, Bioinformatics, vol.30, pp.2105-2113, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01488132

J. M. Belton, B. R. Lajoie, and S. Audibert, The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer, Cell Rep, vol.13, pp.1855-1867, 2015.

A. Rosa and C. Zimmer, Computational Models of LargeScale Genome Architecture, International Review of Cell and Molecular Biology, vol.307, pp.275-349, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02079507

M. A. Marti-renom and L. A. Mirny, Bridging the resolution gap in structural modeling of 3D genome organization, PLoS Comput Biol, vol.7, 2011.

H. Wong, H. Marie-nelly, and S. Herbert, A Predictive Computational Model of the Dynamic 3D Interphase Yeast Nucleus, Curr Biol, vol.22, pp.1881-90, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01420017

H. Tjong, K. Gong, and L. Chen, Physical tethering and volume exclusion determine higher-order genome organization in budding yeast, Genome Res, vol.22, pp.1295-305, 2012.

B. Av¸saroav¸saro-glu, G. Bronk, and S. Gordon-messer, Effect of chromosome tethering on nuclear organization in yeast, PLoS One, vol.9, p.102474, 2014.

N. Tokuda, T. P. Terada, and M. Sasai, Dynamical Modeling of Three-Dimensional Genome Organization in Interphase Budding Yeast, Biophys J, vol.102, pp.296-304, 2012.

J. Arbona, S. Herbert, and E. Fabre, Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations, Genome Biol, vol.18, p.81, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01517883

C. Chen, H. H. Lim, and J. Shi, Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo, Mol Biol Cell, vol.27, pp.3357-3368, 2016.

C. Lee, R. W. Wang, and H. H. Chang, Chromosome position determines the success of double-strand break repair, Proc Natl Acad Sci U S A, vol.113, pp.146-54, 2016.

A. Batt-e, C. Brocas, and H. Bordelet, Recombination at subtelomeres is regulated by physical distance, doubleÀstrand break resection and chromatin status, EMBO J, vol.36, issue.17, pp.2609-2634, 2017.

K. Lobachev, E. Vitriol, and J. Stemple, Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex, Curr Biol, vol.14, pp.2107-2119, 2004.

J. A. Kaye, J. A. Melo, and S. K. Cheung, DNA breaks promote genomic instability by impeding proper chromosome segregation, Curr Biol, vol.14, pp.2096-106, 2004.

S. Jain, N. Sugawara, and J. E. Haber, Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae, PLOS Genet, vol.12, p.1005976, 2016.

R. Shroff, A. Arbel-eden, and D. Pilch, Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break, Curr Biol, vol.14, pp.1703-1711, 2004.

C. Lee, K. Lee, and G. Legube, Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break, Nat Struct Mol Biol, vol.21, pp.103-109, 2013.

J. Renkawitz, C. A. Lademann, and M. Kalocsay, Monitoring Homology Search during DNA Double-Strand Break Repair In Vivo, Mol Cell, vol.50, pp.261-272, 2013.

J. Dekker, Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction, J Biol Chem, vol.283, pp.34532-34572, 2008.

V. Dion, V. Kalck, and C. Horigome, Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery, Nat Cell Biol, vol.14, pp.502-509, 2012.

J. Min-e-hattab and R. , Increased chromosome mobility facilitates homology search during recombination, Nat Cell Biol, vol.14, pp.510-517, 2012.

J. Strecker, G. D. Gupta, and W. Zhang, DNA damage signalling targets the kinetochore to promote chromatin mobility, Nat Cell Biol, vol.18, pp.281-290, 2016.

J. Min-e-hattab, V. Recamier, and I. Izeddin, Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage, Mol Biol Cell, vol.28, pp.3323-3355, 2017.

H. Saad, F. Gallardo, and M. Dalvai, DNA Dynamics during Early Double-Strand Break Processing Revealed by
URL : https://hal.archives-ouvertes.fr/hal-01117870

, Non-Intrusive Imaging of Living Cells, PLoS Genet, vol.10, p.1004187, 2014.

A. Seeber, V. Dion, and S. M. Gasser, Remodelers move chromatin in response to DNA damage, Cell Cycle, vol.13, pp.877-885, 2014.

J. Lawrimore, T. M. Barry, and R. M. Barry, Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage, Mol Biol Cell, vol.28, pp.1701-1711, 2017.

J. Min-e-hattab and R. Rothstein, DNA in motion during double-strand break repair, Trends Cell Biol, vol.23, pp.529-565, 2013.

A. Amitai, M. Toulouze, and K. Dubrana, Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions, PLOS Comput Biol, vol.11, p.1004433, 2015.

M. Rubinstein and R. Colby, Oxford University Press, 2003.