C. J. Weijer, Collective cell migration in development

, J. Cell Sci, vol.122, pp.3215-3223, 2009.

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol, vol.10, pp.445-457, 2009.
DOI : 10.1038/nrm2720

T. D. Pollard and J. A. Cooper, Actin, a central player in cell shape and movement, Science, vol.326, pp.1208-1212, 2009.
DOI : 10.1126/science.1175862

URL : http://europepmc.org/articles/pmc3677050?pdf=render

M. Vicente-manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Mol. Cell Biol, vol.10, pp.778-790, 2009.
DOI : 10.1038/nrm2786

URL : http://europepmc.org/articles/pmc2834236?pdf=render

R. A. Worthylake and K. Burridge, RhoA and ROCK promote migration by limiting membrane protrusions, J. Biol. Chem, vol.278, pp.13578-13584, 2003.

R. A. Worthylake, S. Lemoine, J. M. Watson, and K. Burridge, RhoA is required for monocyte tail retraction during transendothelial migration, J. Cell Biol, vol.154, pp.147-160, 2001.

M. Poujade, Collective migration of an epithelial monolayer in response to a model wound, Proc. Natl Acad. Sci. USA, vol.104, pp.15988-15993, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00175727

D. Boettiger, Mechanical control of integrin-mediated adhesion and signaling, Curr. Opin. Cell Biol, vol.24, pp.592-599, 2012.

B. E. Dabiri, H. Lee, and K. K. Parker, A potential role for integrin signaling in mechanoelectrical feedback, Prog. Biophys. Mol. Biol, vol.110, pp.196-203, 2012.

S. Alexander, G. E. Koehl, M. Hirschberg, E. K. Geissler, and P. Friedl, Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model, Histochem. Cell Biol, vol.130, pp.1147-1154, 2008.

M. Ventre, F. Causa, and P. A. Netti, Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials, J. R. Soc. Interface, vol.9, pp.2017-2032, 2012.

S. Etienne-manneville and A. Hall, Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC?, Cell, vol.106, pp.489-498, 2001.

L. Lamalice, F. Le-boeuf, and J. Huot, Endothelial cell migration during angiogenesis, Circ. Res, vol.100, pp.782-794, 2007.

H. Peng, Y. M. Ong, W. A. Shah, P. C. Holland, and S. Carbonetto, Integrins regulate centrosome integrity and astrocyte polarization following a wound, Dev. Neurobiol, vol.73, pp.333-353, 2013.

N. Yamaguchi, T. Mizutani, K. Kawabata, and H. Haga, In this work, the authors show the functional specificity of the leader cells during the migration of an epithelial cell sheet, using micromanipulation. The crucial role of leader cells in driving the monolayer migration is associated with the activation of ?1-integrins, Sci. Rep, vol.5, p.7656, 2015.

N. Osmani, F. Peglion, P. Chavrier, and S. Etienne-manneville, Cdc42 localization and cell polarity depend on membrane traffic, J. Cell Biol, vol.191, pp.1261-1269, 2010.

N. Osmani, N. Vitale, J. P. Borg, and S. Etienne-manneville, Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration, Curr. Biol, vol.16, pp.2395-2405, 2006.

S. I. Ellenbroek, S. Iden, and J. G. Collard, The Rac activator Tiam1 is required for polarized protrusional outgrowth of primary astrocytes by affecting the organization of the microtubule network, Small GTPases, vol.3, pp.4-14, 2012.

D. M. Pegtel, The Par-Tiam1 complex controls persistent migration by stabilizing microtubuledependent front-rear polarity, Curr. Biol, vol.17, pp.1623-1634, 2007.

C. D. Lawson and K. Burridge, The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration, Small GTPases, vol.5, p.27958, 2014.

T. M. Scales and M. Parsons, Spatial and temporal regulation of integrin signalling during cell migration, Curr. Opin. Cell Biol, vol.23, pp.562-568, 2011.

M. Krause and A. Gautreau, Steering cell migration: lamellipodium dynamics and the regulation of directional persistence, Nat. Rev. Mol. Cell Biol, vol.15, pp.577-590, 2014.

S. Etienne-manneville, Microtubules in cell migration, Annu. Rev. Cell Dev. Biol, vol.29, pp.471-499, 2013.

M. K. Priya, Tipping off endothelial tubes: nitric oxide drives tip cells, Angiogenesis, vol.18, pp.175-189, 2014.

S. Chauvet, K. Burk, and F. Mann, Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues, Cell. Mol. Life Sci, vol.70, pp.1685-1703, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862136

P. Haas and D. Gilmour, Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line, Dev. Cell, vol.10, pp.673-680, 2006.

H. Xu, G?1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium, Dev. Biol, vol.385, pp.316-327, 2014.

M. A. Barber and H. Welch, PI3K and RAC signalling in leukocyte and cancer cell migration, Bull. Cancer, vol.93, pp.44-52, 2006.

V. Kolsch, P. G. Charest, and R. A. Firtel, The regulation of cell motility and chemotaxis by phospholipid signaling, J. Cell Sci, vol.121, pp.551-559, 2008.

W. Guo and F. G. Giancotti, Integrin signalling during tumour progression, Nat. Rev. Mol. Cell Biol, vol.5, pp.816-826, 2004.

B. Shen, M. K. Delaney, and X. Du, Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction, Curr. Opin. Cell Biol, vol.24, pp.600-606, 2012.

L. Boeuf, F. Houle, F. Sussman, M. Huot, and J. , Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by Rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor, Mol. Biol. Cell, vol.17, pp.3508-3520, 2006.

H. K. Avraham, Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase, J. Biol. Chem, vol.278, pp.36661-36668, 2003.

D. J. Sieg, FAK integrates growth-factor and integrin signals to promote cell migration, Nat. Cell Biol, vol.2, pp.249-256, 2000.

C. Wang, The interplay of cell-cell and cellsubstrate adhesion in collective cell migration

, J. R. Soc. Interface, vol.11, p.20140684, 2014.

T. V. Byzova, A mechanism for modulation of cellular responses to VEGF: activation of the integrins, Mol. Cell, vol.6, pp.851-860, 2000.

S. K. Kuwada and X. Li, Integrin ?5/?1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation, Mol. Biol. Cell, vol.11, pp.2485-2496, 2000.

Z. Cruz-monserrate and K. L. O'connor, Integrin ?6?4 promotes migration, invasion through Tiam1 upregulation, and subsequent Rac activation, Neoplasia, vol.10, pp.408-417, 2008.

D. J. Montell, W. H. Yoon, and M. Starz-gaiano, Group choreography: mechanisms orchestrating the collective movement of border cells, Nat. Rev. Mol. Cell Biol, vol.13, pp.631-645, 2012.

A. S. Ghabrial and M. A. Krasnow, Social interactions among epithelial cells during tracheal branching morphogenesis, Nature, vol.441, pp.746-749, 2006.

S. M. Pocha and D. J. Montell, Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations, Annu. Rev. Genet, vol.48, pp.295-318, 2014.

S. Vincent, R. Wilson, C. Coelho, M. Affolter, and M. Leptin, The Drosophila protein Dof is specifically required for FGF signaling, Mol. Cell, vol.2, pp.515-525, 1998.

T. Ikeya and S. Hayashi, Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea, Development, vol.126, pp.4455-4463, 1999.

M. Hellstrom, Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis, Nature, vol.445, pp.776-780, 2007.

A. F. Siekmann and N. D. Lawson, Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries, Nature, vol.445, pp.781-784, 2007.
DOI : 10.1038/nature05577

I. Noguera-troise, Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis, Nature, vol.444, pp.1032-1037, 2006.
DOI : 10.1002/9780470319413.ch9

J. Ridgway, Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis, Nature, vol.444, pp.1083-1087, 2006.
DOI : 10.1038/nature05313

S. Etienne-manneville, Control of polarized cell morphology and motility by adherens junctions, Semin. Cell Dev. Biol, vol.22, pp.850-857, 2011.
DOI : 10.1016/j.semcdb.2011.07.023

S. Etienne-manneville, Adherens junctions during cell migration, Subcell. Biochem, vol.60, pp.225-249, 2012.
DOI : 10.1007/978-94-007-4186-7_10

E. Bazellieres, In this study, the authors identify three groups of molecules involved in different mechanical responses by performing a siRNA screen targeting molecules of cell-cell interactions. Desmosomes, tight junctions and adherens junction proteins have distinct roles in the maintenance and adaptation of epithelial monolayer mechanics, They also distinguish N-, P-and E-cadherin functions in the regulation of intercellular tension equilibrium and the intercellular tension response to extracellular forces, vol.17, pp.409-420, 2015.

E. Camand, F. Peglion, N. Osmani, M. Sanson, and S. Etienne-manneville, N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration, J. Cell Sci, vol.125, pp.844-857, 2012.

Q. Liu, Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development, Dev. Dyn, vol.240, pp.1716-1726, 2011.
DOI : 10.1002/dvdy.22665

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/dvdy.22665

A. L. Wilson, Cadherin-4 plays a role in the development of zebrafish cranial ganglia and lateral line system, Dev. Dyn, vol.236, pp.893-902, 2007.

P. Niewiadomska, D. Godt, and U. Tepass, DE-Cadherin is required for intercellular motility during Drosophila oogenesis, J. Cell Biol, vol.144, pp.533-547, 1999.
DOI : 10.1083/jcb.144.3.533

URL : http://jcb.rupress.org/content/144/3/533.full.pdf

E. Kardash, A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo, Nat. Cell Biol, vol.12, pp.47-53, 2010.

I. Dupin, E. Camand, and S. Etienne-manneville, Classical cadherins control nucleus and centrosome position and cell polarity, J. Cell Biol, vol.185, pp.779-786, 2009.
DOI : 10.1083/jcb.200812034

URL : http://jcb.rupress.org/content/185/5/779.full.pdf

N. Borghi, M. Lowndes, V. Maruthamuthu, M. L. Gardel, and W. J. Nelson, Regulation of cell motile behavior by crosstalk between cadherin-and integrinmediated adhesions, Proc. Natl Acad. Sci. USA, vol.107, pp.13324-13329, 2010.
DOI : 10.1073/pnas.1002662107

URL : http://www.pnas.org/content/107/30/13324.full.pdf

M. Burute and M. Thery, Spatial segregation between cell-cell and cell-matrix adhesions, Curr. Opin. Cell Biol, vol.24, pp.628-636, 2012.
DOI : 10.1016/j.ceb.2012.07.003

URL : https://hal.archives-ouvertes.fr/hal-00744136

R. A. Desai, L. Gao, S. Raghavan, W. F. Liu, and C. S. Chen, Cell polarity triggered by cell-cell adhesion via E-cadherin, J. Cell Sci, vol.122, pp.905-911, 2009.
DOI : 10.1242/jcs.028183

URL : http://jcs.biologists.org/content/122/7/905.full.pdf

C. Carmona-fontaine, Contact inhibition of locomotion in vivo controls neural crest directional migration, Nature, vol.456, pp.957-961, 2008.
DOI : 10.1038/nature07441

URL : http://europepmc.org/articles/pmc2635562?pdf=render

D. T. Tambe, This work analyses the forces involved during collective cell migration of epithelial cell sheets. It shows that cells are able to transmit normal stress across the cell-cell junction, Nat. Mater, vol.10, pp.469-475, 2011.

S. Arima, Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement, Development, vol.138, pp.4763-4776, 2011.
DOI : 10.1242/dev.068023

URL : http://dev.biologists.org/content/138/21/4763.full.pdf

L. Jakobsson, Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting, Nat. Cell Biol, vol.12, pp.943-953, 2010.
DOI : 10.1038/ncb2103

G. Lebreton and J. Casanova, Specification of leading and trailing cell features during collective migration in the Drosophila trachea, J. Cell Sci, vol.127, pp.465-474, 2014.

A. Bianco, Two distinct modes of guidance signalling during collective migration of border cells, Nature, vol.448, pp.362-365, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02119434

M. Prasad and D. J. Montell, Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging, Dev. Cell, vol.12, pp.997-1005, 2007.

P. Friedl, Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro, Cancer Res, vol.55, pp.4557-4560, 1995.

A. Aman and T. Piotrowski, Wnt/?-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression, Dev. Cell, vol.15, pp.749-761, 2008.

X. Wang, L. He, Y. I. Wu, K. M. Hahn, and D. J. Montell, Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo, Nat. Cell Biol, vol.12, pp.591-597, 2010.

M. Inaki, S. Vishnu, A. Cliffe, and P. Rorth, Effective guidance of collective migration based on differences in cell states, Proc. Natl Acad. Sci. USA, vol.109, pp.2027-2032, 2012.

K. Janssens, H. H. Sung, and P. Rorth, Direct detection of guidance receptor activity during border cell migration, Proc. Natl Acad. Sci. USA, vol.107, pp.7323-7328, 2010.

M. Poukkula, A. Cliffe, R. Changede, and P. Rorth, Cell behaviors regulated by guidance cues in collective migration of border cells, J. Cell Biol, vol.192, pp.513-524, 2011.

D. Ramel, X. Wang, C. Laflamme, D. J. Montell, and G. Emery, Rab11 regulates cell-cell communication during collective cell movements, Nat. Cell Biol, vol.15, pp.317-324, 2013.

M. Abercrombie and J. E. Heaysman, Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts, Exp. Cell Res, vol.5, pp.111-131, 1953.

M. Abercrombie, Contact inhibition in tissue culture, In Vitro, vol.6, pp.128-142, 1970.

R. Mayor and C. Carmona-fontaine, Keeping in touch with contact inhibition of locomotion, Trends Cell Biol, vol.20, pp.319-328, 2010.

B. M. Stramer, G. A. Dunn, J. R. Davis, and R. Mayor, Rediscovering contact inhibition in the embryo, J. Microsc, vol.251, pp.206-211, 2013.

E. Theveneau and R. Mayor, Collective cell migration of the cephalic neural crest: the art of integrating information, Genesis, vol.49, pp.164-176, 2011.

E. Theveneau, Collective chemotaxis requires contact-dependent cell polarity, Dev. Cell, vol.19, pp.39-53, 2010.

S. F. Becker, R. Mayor, and J. Kashef, Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration, PLoS ONE, vol.8, p.85717, 2013.

E. H. Barriga, P. H. Maxwell, A. E. Reyes, and R. Mayor, The hypoxia factor Hif-1? controls neural crest chemotaxis and epithelial to mesenchymal transition, J. Cell Biol, vol.201, pp.759-776, 2013.

J. W. Astin, This paper addresses a long standing question concerning the loss of CIL between malignant and normal cells. The authors show that different cells express distinct levels of ephrins and their receptors, Nat. Cell Biol, vol.12, pp.1194-1204, 2010.

J. Batson, L. Maccarthy-morrogh, A. Archer, H. Tanton, and C. D. Nobes, EphA receptors regulate prostate cancer cell dissemination through Vav2-RhoA mediated cell-cell repulsion, Biol. Open, vol.3, pp.453-462, 2014.

V. Villar-cervino, This paper highlights the role of contact repulsion mediated by EPH-ephrin interactions in controlling the directed migration of Cajal-Retzius cells in the cerebral cortex, Neuron, vol.77, pp.457-471, 2013.

C. Carmona-fontaine, H. Matthews, and R. Mayor, Directional cell migration in vivo: Wnt at the crest, Cell Adh. Migr, vol.2, pp.240-242, 2008.

R. Mayor and E. Theveneau, The role of the noncanonical Wnt-planar cell polarity pathway in neural crest migration, Biochem. J, vol.457, pp.19-26, 2014.

H. K. Matthews, Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA, Development, vol.135, pp.1771-1780, 2008.

I. Shnitsar and A. Borchers, PTK7 recruits dsh to regulate neural crest migration, Development, vol.135, pp.4015-4024, 2008.

S. Witzel, V. Zimyanin, F. Carreira-barbosa, M. Tada, and C. P. Heisenberg, Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane, J. Cell Biol, vol.175, pp.791-802, 2006.

N. Bin-nun, PTK7 modulates Wnt signaling activity via LRP6, Development, vol.141, pp.410-421, 2014.

M. Hayes, M. Naito, A. Daulat, S. Angers, and B. Ciruna, Ptk7 promotes non-canonical Wnt/PCPmediated morphogenesis and inhibits Wnt/?-catenindependent cell fate decisions during vertebrate development, Development, vol.140, pp.1807-1818, 2013.

H. Peradziryi, PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling, EMBO J, vol.30, pp.3729-3740, 2011.

E. Theveneau and R. Mayor, Cadherins in collective cell migration of mesenchymal cells, Curr. Opin. Cell Biol, vol.24, pp.677-684, 2012.

R. Moore, Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion, Development, vol.140, pp.4763-4775, 2013.

E. Theveneau and R. Mayor, Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work, Small GTPases, vol.1, pp.113-117, 2010.

R. A. Desai, S. B. Gopal, S. Chen, and C. S. Chen, Contact inhibition of locomotion probabilities drive solitary versus collective cell migration, J. R. Soc. Interface, vol.10, p.20130717, 2013.

J. Kashef, Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases, Genes Dev, vol.23, pp.1393-1398, 2009.

J. R. Davis, Inter-cellular forces orchestrate contact inhibition of locomotion, Cell, vol.161, pp.361-373, 2015.

B. Ulmer, Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration, Cell Rep, vol.3, pp.615-621, 2013.

E. Theveneau, Chase-and-run between adjacent cell populations promotes directional collective migration, Nat. Cell Biol, vol.15, pp.763-772, 2013.

B. A. Camley, Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns, Proc. Natl Acad. Sci. USA, vol.111, pp.14770-14775, 2014.

J. F. Li and J. Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, J. Theor. Biol, vol.343, pp.79-91, 2014.

T. A. Fulga and P. Rorth, Invasive cell migration is initiated by guided growth of long cellular extensions, Nat. Cell Biol, vol.4, pp.715-719, 2002.

D. Cai and D. J. Montell, Diverse and dynamic sources and sinks in gradient formation and directed migration, Curr. Opin. Cell Biol, vol.30, pp.91-98, 2014.

G. Malet-engra, Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion, Curr. Biol, vol.25, pp.242-250, 2015.

N. B. David, Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl Acad. Sci. USA, vol.99, pp.16297-16302, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00260357

A. E. Kerstetter, E. Azodi, J. A. Marrs, and Q. Liu, Cadherin-2 function in the cranial ganglia and lateral line system of developing zebrafish, Dev. Dyn, vol.230, pp.137-143, 2004.

C. Dambly-chaudiere, N. Cubedo, and A. Ghysen, Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1, BMC Dev. Biol, vol.7, p.23, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00264492

G. Valentin, P. Haas, and D. Gilmour, The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b, Curr. Biol, vol.17, pp.1026-1031, 2007.

A. Aman and T. Piotrowski, Cell migration during morphogenesis, Dev. Biol, vol.341, pp.20-33, 2010.

E. Dona, Directional tissue migration through a self-generated chemokine gradient, Nature, vol.503, pp.285-289, 2013.

A. J. Muinonen-martin, This paper demonstrates that melanoma cells break down LPA, generating a LPA gradient that functions as a chemoattractant for the migration of these cells, PLoS Biol, vol.12, p.1001966, 2014.

E. Theveneau and R. Mayor, Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration, Dev. Biol, vol.366, pp.34-54, 2012.

R. Mayor and E. Theveneau, The neural crest, Development, vol.140, pp.2247-2251, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01712198

F. Costantini and R. Kopan, Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development, Dev. Cell, vol.18, pp.698-712, 2010.

D. Dalle-nogare, Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium, Development, vol.141, pp.3188-3196, 2014.

, References 138 and 143 show that leader and follower cells of the lateral line primordium can self-generate gradients of chemokine activity to promote the directed collective migration of the primordium. Expression of Cxcr7b in trailing cells prevents Cxcr4b signalling in these cells

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, Stromal fibroblasts in cancer initiation and progression, Nature, vol.432, pp.332-337, 2004.

K. Pietras and A. Ostman, Hallmarks of cancer: interactions with the tumor stroma, Exp. Cell Res, vol.316, pp.1324-1331, 2010.

A. Szabo and R. Mayor, Cell traction in collective cell migration and morphogenesis: the chase and run mechanism, Cell Adh. Migr, vol.9, pp.380-383, 2015.

C. P. Choe and J. G. Crump, Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics, Development, vol.142, pp.1089-1094, 2015.

M. A. Breau and S. Schneider-maunoury, Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements, Dev. Biol, vol.401, pp.25-36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01538973

L. Attia, J. Schneider, R. Yelin, and T. M. Schultheiss, Collective cell migration of the nephric duct requires FGF signaling, Dev. Dyn, vol.244, pp.157-167, 2015.

E. R. Shamir and A. J. Ewald, Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration, Curr. Top. Dev. Biol, vol.112, pp.353-382, 2015.

J. Wang, J. Cao, A. L. Dickson, and K. D. Poss, Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling, Nature, vol.522, pp.226-230, 2015.

H. Gerhardt, VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia, J. Cell Biol, vol.161, pp.1163-1177, 2003.

P. Duchek and P. Rorth, Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis, Science, vol.291, pp.131-133, 2001.

P. Duchek, K. Somogyi, G. Jekely, S. Beccari, and P. Rorth, Guidance of cell migration by the Drosophila PDGF/VEGF receptor, Cell, vol.107, pp.17-26, 2001.

J. A. Mcdonald, E. M. Pinheiro, and D. J. Montell, PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman, Development, vol.130, pp.3469-3478, 2003.

S. A. Mcdonald, S. L. Preston, M. J. Lovell, N. A. Wright, and J. A. Jankowski, Mechanisms of disease: from stem cells to colorectal cancer, Nat. Clin. Pract. Gastroenterol. Hepatol, vol.3, pp.267-274, 2006.

A. Ghysen, C. Dambly-chaudiere, and D. Raible, Making sense of zebrafish neural development in the Minervois, Neural Dev, vol.2, p.15, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00264493

C. Carmona-fontaine, Complement fragment C3a controls mutual cell attraction during collective cell migration, Dev. Cell, vol.21, pp.1026-1037, 2011.

D. Vignjevic, Fascin, a novel target of ?-catenin-TCF signaling, is expressed at the invasive front of human colon cancer, Cancer Res, vol.67, pp.6844-6853, 2007.

K. Wolf, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion, Nat. Cell Biol, vol.9, pp.893-904, 2007.

S. Etienne-manneville, Actin and microtubules in cell motility: which one is in control?, Traffic, vol.5, pp.470-477, 2004.

A. Jacinto, A. Martinez-arias, and P. Martin, Mechanisms of epithelial fusion and repair, Nat. Cell Biol, vol.3, pp.117-123, 2001.

A. Wicki, Tumor invasion in the absence of epithelial-mesenchymal transition: podoplaninmediated remodeling of the actin cytoskeleton, Cancer Cell, vol.9, pp.261-272, 2006.

R. Mclennan, Multiscale mechanisms of cell migration during development: theory and experiment, Development, vol.139, pp.2935-2944, 2012.

Q. Feng, Cool-1 functions as an essential regulatory node for EGFreceptor-and Src-mediated cell growth, Nat. Cell Biol, vol.8, pp.945-956, 2006.

S. Etienne-manneville, Cdc42 -the centre of polarity, J. Cell Sci, vol.117, pp.1291-1300, 2004.

S. Etienne-manneville and A. Hall, Cell polarity: Par6, aPKC and cytoskeletal crosstalk, Curr. Opin. Cell Biol, vol.15, pp.67-72, 2003.

E. R. Gomes, S. Jani, and G. G. Gundersen, Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells, Cell, vol.121, pp.451-463, 2005.

L. J. Watson, G. Rossi, and P. Brennwald, Quantitative analysis of membrane trafficking in regulation of Cdc42 polarity, Traffic, vol.15, pp.1330-1343, 2014.

J. Cau and A. Hall, Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways, J. Cell Sci, vol.118, pp.2579-2587, 2005.

S. Nola, Scrib regulates PAK activity during the cell migration process, Hum. Mol. Genet, vol.17, pp.3552-3565, 2008.

H. Daub, K. Gevaert, J. Vandekerckhove, A. Sobel, and A. Hall, Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16, J. Biol. Chem, vol.276, pp.1677-1680, 2001.

I. Dupin and S. Etienne-manneville, Nuclear positioning: mechanisms and functions, Int. J. Biochem. Cell Biol, vol.43, pp.1698-1707, 2011.