R. Bhattacharya, A. M. Gonzalez, P. J. Debiase, H. E. Trejo, R. D. Goldman et al., Recruitment of vimentin to the cell surface by ?3 integrin and plectin mediates adhesion strength, J. Cell Sci, vol.122, pp.1390-1400, 2009.

G. Burgstaller, M. Gregor, L. Winter, and G. Wiche, Keeping the vimentin network under control: Cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts, Mol. Biol. Cell, vol.21, pp.3362-3375, 2010.

M. F. Carlier, J. Pernier, P. Montaville, S. Shekhar, and S. Kühn, Control of polarized assembly of actin filaments in cell motility, Cell. Mol. Life Sci, vol.72, pp.3051-3067, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01447808

W. Chan, R. Kozma, Y. Yasui, M. Inagaki, T. Leung et al., Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase, Eur. J. Cell Biol, vol.81, pp.692-701, 2002.

Y. Chu, S. Hughes, and T. Chan-ling, Differentiation and migration of astrocyte precursor cells and astrocytes in human fetal retina: relevance to optic nerve coloboma, FAS EB J, vol.15, pp.2013-2015, 2001.

G. Çolako?lu and A. Brown, Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing, J. Cell Biol, vol.185, pp.769-777, 2009.

D. L. Dujardin, L. E. Barnhart, S. A. Stehman, E. R. Gomes, G. G. Gundersen et al., A role for cytoplasmic dynein and LIS1 in directed cell movement, J. Cell Biol, vol.163, pp.1205-1211, 2003.
DOI : 10.1083/jcb.200310097

URL : http://jcb.rupress.org/content/163/6/1205.full.pdf

I. Dupin and S. Etienne-manneville, Nuclear positioning: mechanisms and functions, Int. J. Biochem. Cell Biol, vol.43, pp.1698-1707, 2011.
DOI : 10.1016/j.biocel.2011.09.004

I. Dupin, E. Camand, and S. Etienne-manneville, Classical cadherins control nucleus and centrosome position and cell polarity, J. Cell Biol, vol.185, pp.779-786, 2009.
DOI : 10.1083/jcb.200812034

URL : http://jcb.rupress.org/content/185/5/779.full.pdf

I. Dupin, Y. Sakamoto, and S. Etienne-manneville, Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus, J. Cell Sci, vol.124, pp.865-872, 2011.

I. Dupin, J. Elric, and S. Etienne-manneville, Adhesive micropatterns to study intermediate filament function in nuclear positioning, Curr. Protoc. Cell Biol, vol.66, pp.1-19, 2015.
DOI : 10.1002/0471143030.cb1307s66

URL : https://hal.archives-ouvertes.fr/pasteur-02059095

C. Eliasson, C. Sahlgren, C. H. Berthold, J. Stakeberg, J. E. Celis et al., Intermediate filament protein partnership in astrocytes, J. Biol. Chem, vol.274, pp.23996-24006, 1999.
DOI : 10.1074/jbc.274.34.23996

URL : http://www.jbc.org/content/274/34/23996.full.pdf

S. Etienne-manneville, Cdc42 -the centre of polarity, J. Cell Sci, vol.117, pp.1291-1300, 2004.

S. Etienne-manneville, In vitro assay of primary astrocyte migration as a tool to study Rho GTPase function in cell polarization, Methods Enzymol, vol.406, issue.06, pp.6044-6051, 2006.

S. Etienne-manneville, Polarity proteins in migration and invasion, Oncogene, vol.27, pp.6970-6980, 2008.
DOI : 10.1038/onc.2008.347

URL : https://www.nature.com/articles/onc2008347.pdf

S. Etienne-manneville, Microtubules in cell migration, Annu. Rev. Cell Dev. Biol, vol.29, pp.471-499, 2013.
DOI : 10.1146/annurev-cellbio-101011-155711

S. Etienne-manneville and A. Hall, Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC?, Cell, vol.106, pp.471-479, 2001.

S. Etienne-manneville and A. Hall, Rho GTPases in cell biology, Nature, vol.420, pp.629-635, 2002.
DOI : 10.1038/nature01148

S. Etienne-manneville and A. Hall, Cell polarity: Par6, aPKC and cytoskeletal crosstalk, Curr. Opin. Cell Biol, vol.15, pp.5-9, 2003.
DOI : 10.1016/s0955067402000054

S. Etienne-manneville, J. B. Manneville, S. Nicholls, M. A. Ferenczi, and A. Hall, Cdc42 and Par6-PKC? regulate the spatially localized association of Dlg1 and APC to control cell polarization, J. Cell Biol, vol.170, pp.895-901, 2005.

A. Faber-elman, A. Solomon, J. A. Abraham, M. Marikovsky, and M. Schwartz, Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation, J. Clin. Invest, vol.97, pp.162-171, 1996.

M. Fruttiger, Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis, Invest. Ophthalmol. Vis. Sci, vol.43, pp.522-527, 2002.

Z. Gan, L. Ding, C. J. Burckhardt, J. Lowery, A. Zaritsky et al., Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration, Cell Syst, vol.3, pp.252-263, 2016.
DOI : 10.1016/j.cels.2016.11.011

URL : http://europepmc.org/articles/pmc5055390?pdf=render

Y. Gao, J. B. Dickerson, F. Guo, J. Zheng, and Y. Zheng, Rational design and characterization of a Rac GTPase-specific small molecule inhibitor, 2004.

, Proc. Natl. Acad. Sci. USA, vol.101, pp.7618-7623

G. Gnanaguru, G. Bachay, S. Biswas, G. Pinzón-duarte, D. D. Hunter et al., Laminins containing the ?2 and ?3 chains regulate astrocyte migration and angiogenesis in the retina, Development, vol.140, pp.2050-2060, 2013.

R. D. Goldman, The role of three cytoplasmic fibers in BHK-21 cell motility, J. Cell Biol, vol.51, pp.752-762, 1971.

M. Gregor, S. Osmanagic-myers, G. Burgstaller, M. Wolfram, I. Fischer et al., Mechanosensing through focal adhesion-anchored intermediate filaments, FAS EB J, vol.28, pp.715-729, 2014.

F. K. Gyoeva and V. I. Gelfand, Coalignment of vimentin intermediate filaments with microtubules depends on kinesin, Nature, vol.353, pp.445-448, 1991.

W. O. Hancock, Bidirectional cargo transport: moving beyond tug of war, Nat. Rev. Mol. Cell Biol, vol.15, pp.615-628, 2014.

B. T. Helfand, A. Mikami, R. B. Vallee, and R. D. Goldman, A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization, J. Cell Biol, vol.157, pp.795-806, 2002.

B. T. Helfand, M. G. Mendez, S. N. Murthy, D. K. Shumaker, B. Grin et al., Vimentin organization modulates the formation of lamellipodia, Mol. Biol. Cell, vol.22, pp.1274-1289, 2011.

H. Herrmann and U. Aebi, Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics, Curr. Opin. Cell Biol, vol.12, issue.99, pp.60-65, 2000.

E. M. Hol and M. Pekny, Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system, Curr. Opin. Cell Biol, vol.32, pp.121-130, 2015.

P. J. Hollenbeck, A. D. Bershadsky, O. Y. Pletjushkina, I. S. Tint, and J. M. Vasiliev, Intermediate filament collapse is an ATP-dependent and actindependent process, J. Cell Sci, vol.92, pp.621-631, 1989.

L. Hong, S. R. Kenney, G. K. Phillips, D. Simpson, C. E. Schroeder et al., Characterization of a Cdc42 protein inhibitor and its use as a molecular probe, J. Biol. Chem, vol.288, pp.8531-8543, 2013.

C. Hookway, L. Ding, M. W. Davidson, J. Z. Rappoport, G. Danuser et al., Microtubule-dependent transport and dynamics of vimentin intermediate filaments, Mol. Biol. Cell, vol.26, pp.1675-1686, 2015.

F. Huber, A. Boire, M. P. López, and G. H. Koenderink, Cytoskeletal crosstalk: when three different personalities team up, Curr. Opin. Cell Biol, vol.32, pp.39-47, 2015.

A. Ilhan-mutlu, L. Wagner, G. Widhalm, A. Wohrer, S. Bartsch et al., Exploratory investigation of eight circulating plasma markers in brain tumor patients, Neurosurg. Rev, vol.36, p.45, 2013.

Y. Jiu, J. Lehtimäki, S. Tojkander, F. Cheng, H. Jäälinoja et al., Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers, Cell Reports, vol.11, pp.1511-1518, 2015.

T. Y. Jung and S. Jung, Early neuroimaging findings of glioblastoma mimicking non-neoplastic cerebral lesion, Neurol. Med. Chir. (Tokyo), vol.47, pp.424-427, 2007.

A. Kölsch, R. Windoffer, and R. E. Leube, Actin-dependent dynamics of keratin filament precursors, Cell Motil. Cytoskeleton, vol.66, pp.976-985, 2009.

A. Kölsch, R. Windoffer, T. Würflinger, T. Aach, and R. E. Leube, The keratin-filament cycle of assembly and disassembly, J. Cell Sci, vol.123, pp.2266-2272, 2010.

D. V. Köster and S. Mayor, Cortical actin and the plasma membrane: inextricably intertwined, Curr. Opin. Cell Biol, vol.38, pp.81-89, 2016.

R. Kozma, S. Ahmed, A. Best, and L. Lim, The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts, Mol. Cell. Biol, vol.15, pp.1942-1952, 1995.

B. Ladoux, R. M. Mège, and X. Trepat, Front-rear polarization by mechanical cues: From single cells to tissues, Trends Cell Biol, vol.26, pp.420-433, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01307708

C. Leduc and S. Etienne-manneville, Intermediate filaments in cell migration and invasion: the unusual suspects, Curr. Opin. Cell Biol, vol.32, pp.102-112, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02059136

E. A. Lepekhin, C. Eliasson, C. H. Berthold, V. Berezin, E. Bock et al., Intermediate filaments regulate astrocyte motility, J. Neurochem, vol.79, pp.617-625, 2001.
DOI : 10.1046/j.1471-4159.2001.00595.x

G. Liao and G. G. Gundersen, Kinesin is a candidate for cross-bridging microtubules and intermediate filaments, J. Biol. Chem, vol.273, pp.9797-9803, 1998.

F. Llense and S. Etienne-manneville, Front-to-rear polarity in migrating cells, Cell polarity, pp.115-146, 2015.

C. D. Lynch, A. M. Lazar, T. Iskratsch, X. Zhang, and M. P. Sheetz, Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions, Mol. Biol. Cell, vol.24, pp.21-30, 2013.

J. B. Manneville, M. Jehanno, and S. Etienne-manneville, Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity, J. Cell Biol, vol.191, pp.585-598, 2010.
DOI : 10.1083/jcb.201002151

URL : https://hal.archives-ouvertes.fr/pasteur-00542451

H. Maslehaty, S. Cordovi, and M. Hefti, Symptomatic spinal metastases of intracranial glioblastoma: clinical characteristics and pathomechanism relating to GFAP expression, J. Neurooncol, vol.101, pp.329-333, 2011.

M. Meriane, S. Mary, F. Comunale, E. Vignal, P. Fort et al., Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network, J. Biol. Chem, vol.275, pp.33046-33052, 2000.

M. E. Murray, M. G. Mendez, and P. A. Janmey, Substrate stiffness regulates solubility of cellular vimentin, Mol. Biol. Cell, vol.25, pp.87-94, 2014.
DOI : 10.1091/mbc.e13-06-0326

URL : https://doi.org/10.1091/mbc.e13-06-0326

N. Osmani, N. Vitale, J. P. Borg, and S. Etienne-manneville, Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration, Curr. Biol, vol.16, pp.2395-2405, 2006.
DOI : 10.1016/j.cub.2006.10.026

URL : https://doi.org/10.1016/j.cub.2006.10.026

N. Osmani, F. Peglion, P. Chavrier, and S. Etienne-manneville, Cdc42 localization and cell polarity depend on membrane traffic, J. Cell Biol, vol.191, pp.1261-1269, 2010.
DOI : 10.1083/jcb.201003091

URL : http://europepmc.org/articles/pmc3010071?pdf=render

A. F. Palazzo, H. L. Joseph, Y. J. Chen, D. L. Dujardin, A. S. Alberts et al., Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization, Curr. Biol, vol.11, pp.475-479, 2001.
DOI : 10.1016/s0960-9822(01)00475-4

URL : https://doi.org/10.1016/s0960-9822(01)00475-4

F. Peglion, F. Llense, and S. Etienne-manneville, Adherens junction treadmilling during collective migration, Nat. Cell Biol, vol.16, pp.639-651, 2014.
DOI : 10.1038/ncb2985

J. R. Peterson, L. C. Bickford, D. Morgan, A. S. Kim, O. Ouerfelli et al., Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation, Nat. Struct. Mol. Biol, vol.11, pp.747-755, 2004.

V. Prahlad, M. Yoon, R. D. Moir, R. D. Vale, and R. D. Goldman, Rapid movements of vimentin on microtubule tracks: Kinesin-dependent assembly of intermediate filament networks, J. Cell Biol, vol.143, pp.159-170, 1998.

A. J. Ridley, Rho GTPase signalling in cell migration, Curr. Opin. Cell Biol, vol.36, pp.103-112, 2015.
DOI : 10.1016/j.ceb.2015.08.005

URL : https://doi.org/10.1016/j.ceb.2015.08.005

A. Robert, H. Herrmann, M. W. Davidson, and V. I. Gelfand, Microtubuledependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho-and p21-activated kinases, FAS EB J, vol.28, pp.2879-2890, 2014.

A. Robert, C. Hookway, and V. I. Gelfand, Intermediate filament dynamics: What we can see now and why it matters, BioEssays, vol.38, pp.232-243, 2016.
DOI : 10.1002/bies.201500142

URL : http://europepmc.org/articles/pmc4772765?pdf=render

C. Rossé, C. Lodillinsky, L. Fuhrmann, M. Nourieh, P. Monteiro et al., Control of MT1-MMP transport by atypical PKC during breast-cancer progression, Proc. Natl. Acad. Sci. USA, vol.111, pp.1872-1879, 2014.

Y. Sakamoto, B. Boëda, and S. Etienne-manneville, APC binds intermediate filaments and is required for their reorganization during cell migration, J. Cell Biol, vol.200, pp.249-258, 2013.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an opensource platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

S. H. Shabbir, M. M. Cleland, R. D. Goldman, and M. Mrksich, Geometric control of vimentin intermediate filaments, Biomaterials, vol.35, pp.1359-1366, 2014.

O. Skalli, U. Wilhelmsson, C. Orndahl, B. Fekete, K. Malmgren et al., Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins, Hum. Pathol, vol.44, pp.2081-2088, 2013.

M. V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci, vol.32, pp.638-647, 2009.

P. M. Steinert, Y. H. Chou, V. Prahlad, D. A. Parry, L. N. Marekov et al., A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV ?-internexin, J. Biol. Chem, vol.274, pp.9881-9890, 1999.

P. M. Steinert, L. N. Marekov, and D. A. Parry, Molecular parameters of type IV ?-internexin and type IV-type III ?-internexin-vimentin copolymer intermediate filaments, J. Biol. Chem, vol.274, pp.1657-1666, 1999.

S. Sultana, S. W. Sernett, R. M. Bellin, R. M. Robson, and O. Skalli, Intermediate filament protein synemin is transiently expressed in a subset of astrocytes during development, Glia, vol.30, pp.1098-1136, 2000.

T. M. Svitkina, A. B. Verkhovsky, and G. G. Borisy, Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton, J. Cell Biol, vol.135, pp.991-1007, 1996.

M. Théry, Micropatterning as a tool to decipher cell morphogenesis and functions, J. Cell Sci, vol.123, pp.4201-4213, 2010.

A. Uchida, G. Çolako?lu, L. Wang, P. C. Monsma, and A. Brown, Severing and end-to-end annealing of neurofilaments in neurons, Proc. Natl. Acad. Sci. USA. 110:E2696-E2705, 2013.

C. E. Walczak, R. S. Rizk, and S. L. Shaw, The use of fluorescence redistribution after photobleaching for analysis of cellular microtubule dynamics, Methods Cell Biol, vol.97, issue.10, pp.97003-97012, 2010.

U. Wickert, N. Mücke, T. Wedig, S. A. Müller, U. Aebi et al., Characterization of the in vitro co-assembly process of the intermediate filament proteins vimentin and desmin: mixed polymers at all stages of assembly, Eur. J. Cell Biol, vol.84, pp.379-391, 2005.

M. M. Zegers and P. Friedl, Rho GTPases in collective cell migration, Small GTPases, vol.5, p.983869, 2014.