B. D. Adair, J. P. Xiong, C. Maddock, S. L. Goodman, M. A. Arnaout et al., Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin, J. Cell Biol, vol.168, pp.1109-1118, 2005.

C. Alibert, B. Goud, and J. B. Manneville, Are cancer cells really softer than normal cells?, Biol. Cell, vol.109, pp.167-189, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01489167

N. J. Anthis, J. R. Haling, C. L. Oxley, M. Memo, K. L. Wegener et al., ? integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation, J. Biol. Chem, vol.284, pp.36700-36710, 2009.

N. J. Anthis, K. L. Wegener, D. R. Critchley, and I. D. Campbell, Structural diversity in integrin/talin interactions, vol.18, pp.1654-1666, 2010.

M. A. Arnaout, B. Mahalingam, and J. P. Xiong, Integrin structure, allostery, and bidirectional signaling, Annu. Rev. Cell Dev. Biol, vol.21, pp.381-410, 2005.

P. Atherton, B. Stutchbury, D. Jethwa, and C. Ballestrem, Mechanosensitive components of integrin adhesions: Role of vinculin, Exp. Cell Res, vol.343, pp.21-27, 2016.

P. Atherton, B. Stutchbury, D. Y. Wang, D. Jethwa, R. Tsang et al., Vinculin controls talin engagement with the actomyosin machinery, Nat. Commun, vol.6, p.10038, 2015.

V. Auernheimer, L. A. Lautscham, M. Leidenberger, O. Friedrich, B. Kappes et al., Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission, J. Cell Sci, vol.128, pp.3435-3443, 2015.

K. Austen, P. Ringer, A. Mehlich, A. Chrostek-grashoff, C. Kluger et al., , 2015.

, Extracellular rigidity sensing by talin isoform-specific mechanical linkages, Nat. Cell Biol, vol.17, pp.1597-1606

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, Cancer cell stiffness: Integrated roles of three-dimensional matrix stiffness and transforming potential, Biophys. J, vol.99, pp.2048-2057, 2010.

H. E. Balcioglu, H. Van-hoorn, D. M. Donato, T. Schmidt, and E. H. Danen, The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions, J. Cell Sci, vol.128, pp.1316-1326, 2015.

M. Barczyk, S. Carracedo, and D. Gullberg, Integrins. Cell Tissue Res, vol.339, pp.269-280, 2010.

D. M. Beauvais, B. J. Burbach, and A. C. Rapraeger, The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells, J. Cell Biol, vol.167, pp.171-181, 2004.

K. Bledzka, K. Bialkowska, H. Nie, J. Qin, T. Byzova et al., Tyrosine phosphorylation of integrin ?3 regulates kindlin-2 binding and integrin activation, J. Biol. Chem, vol.285, pp.30370-30374, 2010.

C. M. Borza, Y. Su, X. Chen, L. Yu, S. Mont et al., Inhibition of integrin alpha2beta1 ameliorates glomerular injury, J. Am. Soc. Nephrol, vol.23, pp.1027-1038, 2012.

B. P. Bouchet, R. E. Gough, Y. Ammon, D. Van-de-willige, H. Post et al., Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions, vol.5, p.18124, 2016.

D. Bouvard, L. Vignoud, S. Dupe-manet, N. Abed, H. N. Fournier et al., Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-1 alpha, J. Biol. Chem, vol.278, pp.6567-6574, 2003.

D. A. Calderwood, I. D. Campbell, and D. R. Critchley, Talins and kindlins: Partners in integrin-mediated adhesion, Nat. Rev. Mol. Cell Biol, vol.14, pp.503-517, 2013.

D. A. Calderwood, Y. Fujioka, J. M. De-pereda, B. García-alvarez, T. Nakamoto et al., Integrin ? cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling, Proc Natl Acad Sci U.S.A, vol.100, pp.2272-2277, 2003.

D. A. Calderwood, R. Zent, R. Grant, D. J. Rees, R. O. Hynes et al., The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation, J. Biol. Chem, vol.274, pp.28071-28074, 1999.
DOI : 10.1074/jbc.274.40.28071

URL : http://www.jbc.org/content/274/40/28071.full.pdf

O. Campàscamp`campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O'connell et al., Quantifying cell-generated mechanical forces within living embryonic tissues, Nat. Methods, vol.11, pp.183-189, 2014.

P. T. Caswell, M. Chan, A. J. Lindsay, M. W. Mccaffrey, D. Boettiger et al., Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments, J. Cell Biol, vol.183, pp.143-155, 2008.

C. E. Chan and D. J. Odde, Traction dynamics of filopodia on compliant substrates, Science, vol.322, pp.1687-1691, 2008.
DOI : 10.1126/science.1163595

D. D. Chang, C. Wong, H. Smith, and J. Liu, ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin, J. Cell Biol, vol.138, pp.1149-1157, 1997.

L. Chen, M. Vicente-manzanares, L. Potvin-trottier, P. W. Wiseman, and A. R. Horwitz, The integrin-ligand interaction regulates adhesion and migration through a molecular clutch, PLoS One, vol.7, p.40202, 2012.
DOI : 10.1371/journal.pone.0040202

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040202&type=printable

W. Chen, J. Lou, E. A. Evans, and C. Zhu, Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells, J. Cell Biol, vol.199, pp.497-512, 2012.
DOI : 10.1083/jcb.201201091

URL : http://jcb.rupress.org/content/199/3/497.full.pdf

S. R. Coyer, A. Singh, D. W. Dumbauld, D. A. Calderwood, S. W. Craig et al., Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension, J. Cell Sci, vol.125, pp.5110-5123, 2012.
DOI : 10.1242/jcs.108035

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533393/pdf

E. H. Danen, P. Sonneveld, C. Brakebusch, R. F-¨-assler, and A. Sonnenberg, The fibronectin-binding integrins ?5?1 and ?v?3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis, J. Cell Biol, vol.159, pp.1071-1086, 2002.

E. H. Danen, J. Van-rheenen, W. Franken, S. Huveneers, P. Sonneveld et al., Integrins control motile strategy through a Rho-cofilin pathway, J. Cell Biol, vol.169, pp.515-526, 2005.
DOI : 10.1083/jcb.200412081

URL : http://jcb.rupress.org/content/jcb/169/3/515.full.pdf

M. Das, S. Ithychanda, J. Qin, and E. F. Plow, Mechanisms of talin-dependent integrin signaling and crosstalk, Biochim. Biophys. Acta, vol.1838, pp.579-588, 2014.
DOI : 10.1016/j.bbamem.2013.07.017

URL : https://doi.org/10.1016/j.bbamem.2013.07.017

C. De-pascalis and S. Etienne-manneville, Single and collective cell migration: The mechanics of adhesions, Mol. Biol. Cell, vol.28, pp.1833-1846, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02058848

A. Del-rio, R. Perez-jimenez, R. Liu, P. Roca-cusachs, J. M. Fernandez et al., Stretching single talin rod molecules activates vinculin binding, Science, vol.323, pp.638-641, 2009.

D. W. Dumbauld, T. T. Lee, A. Singh, J. Scrimgeour, C. A. Gersbach et al., How vinculin regulates force transmission, Proc Natl Acad Sci U.S.A, vol.110, pp.9788-9793, 2013.
DOI : 10.1073/pnas.1216209110

URL : http://europepmc.org/articles/pmc3683711?pdf=render

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.
DOI : 10.1038/nature10137

M. Egeblad, M. G. Rasch, and V. M. Weaver, Dynamic interplay between the collagen scaffold and tumor evolution, Curr. Opin. Cell Biol, vol.22, pp.697-706, 2010.
DOI : 10.1016/j.ceb.2010.08.015

URL : http://europepmc.org/articles/pmc2948601?pdf=render

A. J. Ehrlicher, F. Nakamura, J. Hartwig, D. Weitz, and T. Stossel, Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A, Nature, vol.478, pp.260-263, 2011.

A. Elbediwy, Z. I. Vincent-mistiaen, and B. J. Thompson, YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage, Bioessays, vol.38, pp.644-653, 2016.
DOI : 10.1002/bies.201600037

URL : http://europepmc.org/articles/pmc5031209?pdf=render

*. Elosegui-artola, A. Bazellì-eres, E. Allen, M. D. Andreu, I. Oria et al., Rigidity sensing and adaptation through regulation of integrin types, Nat. Mater, vol.13, pp.631-637, 2014.
DOI : 10.1038/nmat3960

URL : http://europepmc.org/articles/pmc4031069?pdf=render

A. Elosegui-artola, R. Oria, Y. Chen, A. Kosmalska, C. Perez-gonzalez et al., Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity, Nat. Cell Biol, vol.18, pp.540-548, 2016.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J. Cell Sci, vol.123, pp.4195-4200, 2010.

J. C. Friedland, M. H. Lee, and D. Boettiger, Mechanically activated integrin switch controls alpha5beta1 function, Science, vol.323, pp.642-644, 2009.
DOI : 10.1126/science.1168441

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, The relationship between force and focal complex development, J. Cell Biol, vol.159, pp.695-705, 2002.
DOI : 10.1083/jcb.200204153

URL : http://jcb.rupress.org/content/jcb/159/4/695.full.pdf

F. Gattazzo, A. Urciuolo, and P. Bonaldo, Extracellular matrix: A dynamic microenvironment for stem cell niche, Biochim. Biophys. Acta, vol.1840, pp.2506-2519, 2014.
DOI : 10.1016/j.bbagen.2014.01.010

URL : https://doi.org/10.1016/j.bbagen.2014.01.010

D. Geblinger, L. Addadi, and B. Geiger, Nano-topography sensing by osteoclasts, J. Cell Sci, vol.123, pp.1503-1510, 2010.
DOI : 10.1242/jcs.073411

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858020/pdf

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental sensing through focal adhesions, Nat. Rev. Mol. Cell Biol, vol.10, pp.21-33, 2009.
DOI : 10.1038/nrm2593

B. Geiger and K. M. Yamada, Molecular architecture and function of matrix adhesions, Cold Spring Harb. Perspect. Biol, vol.3, p.5033, 2011.
DOI : 10.1101/cshperspect.a005033

URL : http://cshperspectives.cshlp.org/content/3/5/a005033.full.pdf

M. Gimona, R. Buccione, S. A. Courtneidge, and S. Linder, Assembly and biological role of podosomes and invadopodia, Curr. Opin. Cell Biol, vol.20, pp.235-241, 2008.
DOI : 10.1016/j.ceb.2008.01.005

B. T. Goult, T. Zacharchenko, N. Bate, R. Tsang, F. Hey et al., RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover, J. Biol. Chem, vol.288, pp.8238-8249, 2013.
DOI : 10.1074/jbc.m112.438119

URL : http://www.jbc.org/content/288/12/8238.full.pdf

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons et al.,

M. A. Schwartz, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.466, pp.263-266, 2010.

D. S. Harburger, M. Bouaouina, and D. A. Calderwood, , 2009.

, Kindlin-1 and -2 Directly Bind the C-terminal Region of ? Integrin, J. Biol. Chem, vol.284, pp.11485-11497

D. T. Haynie, Molecular physiology of the tensin brotherhood of integrin adaptor proteins, Proteins, vol.82, pp.1113-1127, 2014.

E. R. Horton, P. Astudillo, M. J. Humphries, and J. D. Humphries, Mechanosensitivity of integrin adhesion complexes: Role of the consensus adhesome, Exp. Cell Res, vol.343, pp.7-13, 2016.

K. Hozumi, N. Suzuki, P. K. Nielsen, M. Nomizu, and Y. Yamada, Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1, J. Biol. Chem, vol.281, pp.32929-32940, 2006.
DOI : 10.1074/jbc.m605708200

P. E. Hughes, F. Diaz-gonzalez, L. Leong, C. Wu, J. A. Mcdonald et al., Breaking the integrin hinge. A defined structural constraint regulates integrin signaling, J. Biol. Chem, vol.271, pp.6571-6574, 1996.
DOI : 10.1074/jbc.271.12.6571

URL : http://www.jbc.org/content/271/12/6571.full.pdf

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol, vol.15, pp.802-812, 2014.
DOI : 10.1038/nrm3896

URL : http://europepmc.org/articles/pmc4513363?pdf=render

S. Huveneers, H. Truong, R. F-¨-assler, A. Sonnenberg, and E. H. Danen, Binding of soluble fibronectin to integrin ?5?1 -link to focal adhesion redistribution and contractile shape, J. Cell Sci, vol.121, pp.2452-2462, 2008.

R. O. Hynes, Integrins: Bidirectional, allosteric signaling machines, Cell, vol.110, pp.673-687, 2002.

R. O. Hynes, Extracellular matrix: Not just pretty fibrils, Science, vol.326, pp.1216-1219, 2009.
DOI : 10.1126/science.1176009

URL : http://europepmc.org/articles/pmc3536535?pdf=render

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, Appreciating force and shape-the rise of mechanotransduction in cell biology, Nat. Rev. Mol. Cell Biol, vol.15, pp.825-833, 2014.

I. L. Ivanovska, J. Shin, J. Swift, and D. E. Discher, Stem cell mechanobiology: Diverse lessons from bone marrow, Trends Cell Biol, vol.25, pp.523-532, 2015.
DOI : 10.1016/j.tcb.2015.04.003

URL : http://europepmc.org/articles/pmc4555184?pdf=render

K. A. Jansen, P. Atherton, and C. Ballestrem, , 2017.

, Mechanotransduction at the cell-matrix interface, Semin. Cell Dev. Biol, vol.71, pp.75-83

G. Jiang, A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz, Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha, Biophys. J, vol.90, pp.1804-1809, 2006.
DOI : 10.1529/biophysj.105.072462

URL : https://doi.org/10.1529/biophysj.105.072462

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson et al., Nanoscale architecture of integrin-based cell adhesions, Nature, vol.468, pp.580-584, 2010.
DOI : 10.1038/nature09621

URL : http://europepmc.org/articles/pmc3046339?pdf=render

P. Kanchanawong and C. M. Waterman, Localization-based super-resolution imaging of cellular structures, Methods Mol. Biol, vol.1046, pp.59-84, 2013.

B. Z. Katz, E. Zamir, A. Bershadsky, Z. Kam, K. M. Yamada et al., Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions, Mol. Biol. Cell, vol.11, pp.1047-1060, 2000.

S. Klapproth, M. Sperandio, E. M. Pinheiro, M. Prünsterpr¨prünster, O. Soehnlein et al., Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired ?2 integrin function in mice, Blood, vol.126, pp.2704-2712, 2015.

F. Kong, A. J. Garcia, A. P. Mould, M. J. Humphries, and C. Zhu, Demonstration of catch bonds between an integrin and its ligand, J. Cell Biol, vol.185, pp.1275-1284, 2009.
DOI : 10.1083/jcb.200810002

URL : http://jcb.rupress.org/content/185/7/1275.full.pdf

B. Ladoux, R. M-`-ege, and X. Trepat, Front-rear polarization by mechanical cues: From single cells to tissues, Trends Cell Biol, vol.26, pp.420-433, 2016.
DOI : 10.1016/j.tcb.2016.02.002

URL : https://hal.archives-ouvertes.fr/hal-01307708

E. M. Lafuente, A. A. Van-puijenbroek, M. Krause, C. V. Carman, G. J. Freeman et al., RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion, Dev. Cell, vol.7, pp.585-595, 2004.
DOI : 10.1016/j.devcel.2004.07.021

URL : https://doi.org/10.1016/j.devcel.2004.07.021

J. R. Lange, J. Steinwachs, T. Kolb, L. A. Lautscham, I. Harder et al., Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties, Biophys. J, vol.109, pp.26-34, 2015.
DOI : 10.1016/j.bpj.2015.05.029

URL : https://doi.org/10.1016/j.bpj.2015.05.029

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin et al., Measurement of mechanical tractions exerted by cells within three-dimensional matrices, Nat. Methods, vol.7, pp.969-971, 2010.
DOI : 10.1038/nmeth.1531

URL : http://europepmc.org/articles/pmc3056435?pdf=render

J. Li, H. Chen, Y. Xu, J. Hu, F. Q. Xie et al., Integrin endocytosis on elastic substrates mediates mechanosensing, J. Biomech, vol.49, pp.2644-2654, 2016.
DOI : 10.1016/j.jbiomech.2016.05.024

G. L. Lin, D. M. Cohen, R. A. Desai, M. T. Breckenridge, L. Gao et al., Activation of beta 1 but not beta 3 integrin increases cell traction forces, FEBS Lett, vol.587, pp.763-769, 2013.

S. Linder and M. Aepfelbacher, Podosomes: Adhesion hot-spots of invasive cells, Trends Cell Biol, vol.13, pp.376-385, 2003.
DOI : 10.1016/s0962-8924(03)00128-4

R. I. Litvinov, V. Barsegov, A. J. Schissler, A. R. Fisher, J. S. Bennett et al., Dissociation of Bimolecular ?IIb?3-Fibrinogen Complex under a Constant Tensile Force, 2011.

, Biophys. J, vol.100, pp.165-173

C. A. Lowell and T. N. Mayadas, Overview-studying integrins in vivo, Methods Mol. Biol, vol.757, pp.369-397, 2012.

P. Lu, K. Takai, V. M. Weaver, and Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb. Perspect. Biol, vol.3, p.5058, 2011.

N. L. Malinin, L. Zhang, J. Choi, A. Ciocea, O. Razorenova et al., A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans, Nat. Med, vol.15, pp.313-318, 2009.

K. J. Mcquade, D. M. Beauvais, B. J. Burbach, and A. C. Rapraeger, Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts, J. Cell Sci, vol.119, pp.2445-2456, 2006.

A. Millon-fremillon, D. Bouvard, A. Grichine, S. Manet-dupe, M. R. Block et al., Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent beta1-integrin affinity, J. Cell Biol, vol.180, pp.427-441, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00263537

R. Milloud, O. Destaing, R. De-mets, I. Bourrin-reynard, C. Oddou et al., alphavbeta3 integrins negatively regulate cellular forces by phosphorylation of its distal NPXY site, Biol. Cell, vol.109, pp.127-137, 2017.

T. *mitchison and M. Kirschner, Cytoskeletal dynamics and nerve growth, Neuron, vol.1, pp.761-772, 1988.

S. K. Mitra and D. D. Schlaepfer, Integrin-regulated FAKSrc signaling in normal and cancer cells, Curr. opin. cell biol, vol.18, pp.516-523, 2006.

S. W. Moore, P. Roca-cusachs, and M. P. Sheetz, Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing, Dev. Cell, vol.19, pp.194-206, 2010.

F. A. Moretti, M. Moser, R. Lyck, M. Abadier, R. Ruppert et al., Kindlin-3 regulates integrin activation and adhesion reinforcement of effector T cells, Proc Natl Acad Sci U.S.A, vol.110, pp.17005-17010, 2013.

M. R. Morgan, H. Hamidi, . Bass, D. Mark, S. Warwood et al., Syndecan-4 phosphorylation is a control point for integrin recycling, Dev. Cell, vol.24, pp.472-485, 2013.

M. R. Morgan, M. J. Humphries, and M. D. Bass, Synergistic control of cell adhesion by integrins and syndecans, Nat. Rev. Mol. Cell Biol, vol.8, pp.957-969, 2007.

M. Moser, B. Nieswandt, S. Ussar, M. Pozgajova, and R. Fassler, Kindlin-3 is essential for integrin activation and platelet aggregation, Nat. Med, vol.14, pp.325-330, 2008.

Z. Mostafavi-pour, J. A. Askari, S. J. Parkinson, P. J. Parker, T. T. Ng et al., Integrin-specific signaling pathways controlling focal adhesion formation and cell migration, J. Cell Biol, vol.161, pp.155-167, 2003.

S. Niland, C. Westerhausen, S. W. Schneider, B. Eckes, M. F. Schneider et al., Biofunctionalization of a generic collagenous triple helix with the alpha2beta1 integrin binding site allows molecular force measurements, Int. J. Biochem. Cell Biol, vol.43, pp.721-731, 2011.

T. Nishimura and K. Kaibuchi, Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3, Dev. Cell, vol.13, pp.15-28, 2007.

P. Nordenfelt, H. L. Elliott, and T. A. Springer, Coordinated integrin activation by actin-dependent force during T-cell migration, Nat. Commun, vol.7, p.13119, 2016.

T. Ogawa, Y. Tsubota, J. Hashimoto, Y. Kariya, and K. Miyazaki, The short arm of laminin gamma2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta4 chain, Mol. Biol. Cell, vol.18, pp.1621-1633, 2007.

M. Pfaff, S. Liu, D. J. Erle, and M. H. Ginsberg, Integrin ? cytoplasmic domains differentially bind to cytoskeletal proteins, J. Biol. Chem, vol.273, pp.6104-6109, 1998.

S. V. Plotnikov, A. M. Pasapera, B. Sabass, and C. M. Waterman, Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration, Cell, vol.151, pp.1513-1527, 2012.

J. K. Rantala, J. Pouwels, T. Pellinen, S. Veltel, P. Laasola et al., SHARPIN is an endogenous inhibitor of beta1-integrin activation, Nat. Cell Biol, vol.13, pp.1315-1324, 2011.

A. J. Ridley and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, vol.70, pp.389-399, 1992.

P. Ringer, G. Colo, R. F-¨-assler, and C. Grashoff, Sensing the mechano-chemical properties of the extracellular matrix, Matrix Biol, vol.64, pp.6-16, 2017.

D. Riveline, E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki et al., Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol, vol.153, pp.1175-1186, 2001.

*. Roca-cusachs, P. Gauthier, N. C. Del-rio, A. Sheetz, and M. P. , Clustering of ?(5)?(1) integrins determines adhesion strength whereas ?(v)?(3) and talin enable mechanotransduction, Proc Natl Acad Sci U.S.A, vol.106, pp.16245-16250, 2009.

T. D. Ross, B. G. Coon, S. Yun, N. Baeyens, K. Tanaka et al., Integrins in mechanotransduction, Curr. Opin. Cell Biol, vol.25, pp.613-618, 2013.

O. Rossier, V. Octeau, J. B. Sibarita, C. Leduc, B. Tessier et al., , 2012.

, Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions, Nat. Cell Biol, vol.14, pp.1057-1067

Y. Sawada, M. Tamada, B. J. Dubin-thaler, O. Cherniavskaya, R. Sakai et al., Force sensing by extension of the Src family kinase substrate, p130Cas, Cell, vol.127, pp.1015-1026, 2006.

V. Schaufler, H. Czichos-medda, V. Hirschfeld-warnecken, S. Neubauer, F. Rechenmacher et al., , 2016.

, Selective binding and lateral clustering of ?5?1 and ?v?3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly, Cell Adh. Migr, vol.10, pp.505-515

H. B. Schiller, C. C. Friedel, C. Boulegue, and R. Fassler, Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins, EMBO Rep, vol.12, pp.259-266, 2011.

H. B. Schiller, M. R. Hermann, J. Polleux, T. Vignaud, S. Zanivan et al., beta1-and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments, Nat. Cell Biol, vol.15, pp.625-636, 2013.

M. A. Schwartz, Integrins and extracellular matrix in mechanotransduction, Cold Spring Harb. Perspect. Biol, vol.2, p.5066, 2010.

M. A. Senetar, C. L. Moncman, and R. O. Mccann, Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle, Cell Motil. Cytoskeleton, vol.64, pp.157-173, 2007.

J. Seong, A. Tajik, J. Sun, J. L. Guan, M. J. Humphries et al., Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins, Proc Natl Acad Sci U.S.A, vol.110, pp.19372-19377, 2013.

B. Shen, M. K. Delaney, and X. Du, Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction, Curr. Opin. Cell Biol, vol.24, pp.600-606, 2012.

S. J. Stehbens, M. Paszek, H. Pemble, A. Ettinger, S. Gierke et al., CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover, Nat. Cell Biol, vol.16, pp.561-573, 2014.

M. Stoker, C. O'neill, S. Berryman, and V. Waxman, Anchorage and growth regulation in normal and virus-transformed cells, Int. J. Cancer, vol.3, pp.683-693, 1968.

W. Su, J. Wynne, E. M. Pinheiro, M. Strazza, A. Mor et al., Rap1 and its effector RIAM are required for lymphocyte trafficking, Blood, vol.126, pp.2695-2703, 2015.

Z. Sun, S. S. Guo, and R. Fassler, Integrin-mediated mechanotransduction, J. Cell Biol, vol.215, pp.445-456, 2016.

Z. Sun, H. Y. Tseng, S. Tan, F. Senger, L. Kurzawa et al., Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation, Nat. Cell Biol, vol.18, pp.941-953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414459

V. Swaminathan and C. M. Waterman, The molecular clutch model for mechanotransduction evolves, Nat. Cell Biol, vol.18, pp.459-461, 2016.

S. Tadokoro, S. J. Shattil, K. Eto, V. Tai, R. C. Liddington et al., Talin binding to integrin beta tails: A final common step in integrin activation, Science, vol.302, pp.103-106, 2003.

Y. Takada, X. Ye, and S. Simon, The integrins, Genome Biol, vol.8, p.215, 2007.

M. Theodosiou, M. Widmaier, R. T. B-¨-ottcher, E. Rognoni, M. Veelders et al., Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin, vol.5, p.10130, 2016.

J. C. Tung, J. M. Barnes, S. R. Desai, C. Sistrunk, M. W. Conklin et al., Spatiotemporal organization and mechanosensory function of podosomes, 269-280 van den Dries, vol.79, pp.268-272, 2014.

K. Van-den-dries, S. L. Schwartz, J. Byars, M. B. Meddens, M. Bolomini-vittori et al., Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes, Mol. Biol. Cell, vol.24, pp.2112-2123, 2013.

, CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor, Dev. Cell, vol.27, pp.145-160

G. Walko, M. J. Castã-n-´-on, and G. Wiche, Molecular architecture and function of the hemidesmosome, Cell Tissue Res, vol.360, pp.363-378, 2015.

X. Wang and T. Ha, Defining single molecular forces required to activate integrin and notch signaling, Science, vol.340, pp.991-994, 2013.

X. Wang, J. Sun, Q. Xu, F. Chowdhury, M. Roein-peikar et al., Integrin molecular tension within motile focal adhesions, Biophys. J, vol.109, pp.2259-2267, 2015.

J. P. Xiong, T. Stehle, B. Diefenbach, R. Zhang, R. Dunker et al., Crystal structure of the extracellular segment of integrin alpha Vbeta3, Science, vol.294, pp.339-345, 2001.

M. Yao, B. T. Goult, B. Klapholz, X. Hu, C. P. Toseland et al., The mechanical response of talin, Nat. Commun, vol.7, p.11966, 2016.

C. H. Yu, N. B. Rafiq, A. Krishnasamy, K. L. Hartman, G. E. Jones et al., Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces, Cell Rep, vol.5, pp.1456-1468, 2013.

R. Zaidel-bar, C. Ballestrem, Z. Kam, and B. Geiger, Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells, J. Cell Sci, vol.116, pp.4605-4613, 2003.