D. D. Leipe, E. V. Koonin, and L. Aravind, STAND, a class of P-Loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer, 2004.

, J. Mol. Biol, vol.343, pp.1-28

O. Danot, E. Marquenet, D. Vidal-ingigliardi, and E. Richet, Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins, Structure, vol.17, pp.172-182, 2009.

J. P. Erzberger and J. M. Berger, Evolutionary relationships and structural mechanisms of AAA+ proteins, Annu. Rev. Biophys. Biomol. Struct, vol.35, pp.93-114, 2006.

Y. Jia, S. A. Mcadams, G. T. Bryan, H. P. Hershey, and B. Valent, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance, EMBO J, vol.19, pp.4004-4014, 2000.

O. Danot, A complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.435-440, 2001.

T. Tanabe, M. Chamaillard, Y. Ogura, L. Zhu, S. Qiu et al., Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition, EMBO J, vol.23, pp.1587-1597, 2004.

X. Yu, D. Acehan, J. Ménétret, C. R. Booth, S. J. Ludtke et al., A structure of the human apoptosome at 12.8 ? A resolution provides insights into this cell death platform, Structure, vol.13, pp.1725-1735, 2005.

O. Danot, How 'arm-twisting' by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND), Nucleic Acids Res, vol.43, pp.3089-3099, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01160453

T. C. Cheng, C. Hong, I. V. Akey, S. Yuan, and C. W. Akey, , 2016.

J. L. Tenthorey, E. M. Kofoed, M. D. Daugherty, H. S. Malik, and R. E. Vance, Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes, Mol. Cell, vol.54, pp.17-29, 2014.

E. J. Slootweg, L. N. Spiridon, J. Roosien, P. Butterbach, R. Pomp et al.,

. Gpa2, Plant Physiol, vol.162, pp.1510-1528

M. Bernoux, H. Burdett, S. J. Williams, X. Zhang, C. Chen et al., Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model, Plant Cell, vol.28, pp.146-159, 2016.

Z. Hu, C. Yan, P. Liu, Z. Huang, R. Ma et al., Crystal structure of NLRC4 reveals its autoinhibition mechanism, Science, vol.341, pp.172-175, 2013.

T. F. Reubold, S. Wohlgemuth, and S. Eschenburg, Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis, Structure, vol.19, pp.1074-1083, 2011.

J. M. Urbach and F. M. Ausubel, The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.1063-1068, 2017.

P. Liu, O. Danot, and E. Richet, A dual role for the inducer in signalling by MalT, a signal transduction ATPase with numerous domains (STAND), Mol. Microbiol, vol.90, pp.1309-1323, 2013.

M. Nørregaard-madsen, E. Mcfall, and P. Valentin-hansen, Organization and transcriptional regulation of the Escherichia coli K-12 D-serine tolerance locus, J. Bacteriol, vol.177, pp.6456-6461, 1995.

T. Burr, J. Mitchell, A. Kolb, S. Minchin, and S. Busby, DNA sequence elements located immediately upstream of the-10 hexamer in Escherichia coli promoters: a systematic study, Nucleic Acids Res, vol.28, pp.1864-1870, 2000.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Exp. Purif, vol.41, pp.207-234, 2005.

E. Marquenet and E. Richet, How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis, Mol. Cell, vol.28, pp.187-199, 2007.

W. Kabsch, XDS. Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.66, pp.125-132, 2010.

W. Kabsch, Integration, scaling, space-group assignment and post-refinement, Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.66, pp.133-144, 2010.

G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A: Found. Crystallogr, vol.64, pp.112-122, 2008.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

K. Y. Zhang, K. Cowtan, and P. Main, Combining constraints for electron-density modification, Methods Enzymol, vol.277, pp.53-64, 1997.

L. Zimmermann, A. Stephens, S. Z. Nam, D. Rau, J. Kubler et al., A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core, J. Mol. Biol, vol.430, pp.2237-2243, 2017.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.66, pp.486-501, 2010.

P. D. Adams, P. V. Afonine, G. Bunkóczibunk´bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.66, pp.213-221, 2010.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, 2011.

, Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.67, pp.235-242

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. Sect. D: Biol. Crystallogr, vol.66, pp.12-21, 2010.

K. Katoh, J. Rozewicki, and K. D. Yamada, MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Briefings Bioinf, 2017.

S. Capella-gutiérrez, J. M. Silla-martínez, and T. Gabaldóngabald´gabaldón, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

T. Frickey and A. Lupas, CLANS: a Java application for visualizing protein families based on pairwise similarity, Bioinformatics, vol.20, pp.3702-3704, 2004.

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

C. Steegborn, O. Danot, R. Huber, and T. Clausen, Crystal structure of transcription factor MalT domain III: A domain helix repeat fold implicated in regulated oligomerization, Structure, vol.9, pp.1051-1060, 2001.

E. Richet, N. Joly, and O. Danot, Two domains of MalT, the activator of the Escherichia coli maltose regulon, bear determinants essential for anti-activation by MalK, J. Mol. Biol, vol.347, pp.1-10, 2005.

L. Aravind and E. V. Koonin, DNA-binding proteins and evolution of transcription regulation in the archaea, Nucleic Acids Res, vol.27, pp.4658-4670, 1999.

S. Maekawa, U. Ohto, T. Shibata, K. Miyake, and T. Shimizu, Crystal structure of NOD2 and its implications in human disease, Nat. Commun, vol.7, p.11813, 2016.

D. Andrea, L. D. Regan, and L. , TPR proteins: the versatile helix, Trends Biochem. Sci, vol.28, pp.655-662, 2003.

L. Holm and L. M. Laakso, Dali server update, Nucleic Acids Res, vol.44, pp.351-355, 2016.

E. R. Main, Y. Xiong, M. J. Cocco, L. Andrea, and L. Regan, Design of stable alpha-helical arrays from an idealized TPR motif, Structure, vol.11, pp.497-508, 2003.

S. J. Riedl, W. Li, Y. Chao, R. Schwarzenbacher, and Y. Shi, Structure of the apoptotic protease-activating factor 1 bound to ADP, Nature, vol.434, pp.926-933, 2005.

A. V. Kajava, What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome, J. Biol. Chem, vol.277, pp.49791-49798, 2002.

M. Zhou, Y. Li, Q. Hu, X. C. Bai, W. Huang et al., Atomic structure of the apoptosome: mechanism of cytochrome c-and dATP-mediated activation of Apaf-1, Genes Dev, vol.29, pp.2349-2361, 2015.

J. J. Falke and D. E. Koshland, Global flexibility in a sensory receptor: A site-directed cross-linking approach, Science, vol.237, pp.1596-1600, 1987.

O. Danot, The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor, Mol. Microbiol, vol.77, pp.628-641, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552641

V. Schreiber and E. Richet, Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP, J. Biol. Chem, vol.274, pp.33220-33226, 1999.

E. Marquenet and E. Richet, Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli, J. Bacteriol, vol.192, pp.5181-5191, 2010.

E. Perez-rueda and S. C. Janga, Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin, Mol. Biol. Evol, vol.27, pp.1449-1459, 2010.

J. Yang, Y. Zhao, P. Li, Y. Yang, E. Zhang et al., Sequence determinants of specific pattern-recognition of bacterial ligands by the NAIP-NLRC4 inflammasome, Cell Discov, vol.4, p.22, 2018.

Z. Hu, Q. Zhou, C. Zhang, S. Fan, W. Cheng et al., Structural and biochemical basis for induced self-propagation of NLRC4, Science, vol.350, pp.399-404, 2015.

B. Faustin, Y. Chen, D. Zhai, G. Le-negrate, L. Lartigue et al., Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.3935-3940, 2009.

Q. Bao, W. Lu, J. D. Rabinowitz, and Y. Shi, Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1, Mol. Cell, vol.25, pp.181-192, 2007.

V. Schreiber, C. Steegborn, T. Clausen, W. Boos, and E. Richet, A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors, Mol. Microbiol, vol.35, pp.765-776, 2000.

N. Joly, A. B-¨-ohm, W. Boos, and E. Richet, MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding, J. Biol. Chem, vol.279, pp.33123-33130, 2004.

A. B-¨-ohm, J. Diez, K. Diederichs, W. Welte, and W. Boos, Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly, J. Biol. Chem, vol.277, pp.3708-3717, 2002.

K. ¨-uhnau, S. Reyes, M. Sievertsen, A. Shuman, H. A. Boos et al., The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations, J. Bacteriol, vol.173, pp.2180-2186, 1991.

D. Khare, M. L. Oldham, C. Orelle, A. L. Davidson, and J. Chen, Alternating access in maltose transporter mediated by rigid-body rotations, Mol. Cell, vol.33, pp.528-536, 2009.

E. Richet, A. L. Davidson, and N. Joly, The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate, Mol. Microbiol, vol.85, pp.632-647, 2012.