J. A. Armstrong, H. , and P. D. , Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J. Exp. Med, vol.134, pp.713-740, 1971.

J. Augenstreich, A. Arbues, R. Simeone, E. Haanappel, A. Wegener et al., ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis, Cell. Microbiol, vol.19, p.12726, 2017.

S. Bhardwaj, N. Srivastava, R. Sudan, and B. Saha, Leishmania interferes with host cell signaling to devise a survival strategy, J. Biomed. Biotechnol, p.109189, 2010.

S. Bolte and F. P. Cordeliè-res, A guided tour into subcellular colocalization analysis in light microscopy, J. Microsc, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

P. Brodin, Y. Poquet, F. Levillain, I. Peguillet, G. Larrouy-maumus et al., High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling, PLoS Pathog, vol.6, p.1001100, 2010.

J. P. Carralot, T. K. Kim, B. Lenseigne, A. S. Boese, P. Sommer et al., Automated high-throughput siRNA transfection in raw 264.7 macrophages: a case study for optimization procedure, J. Biomol. Screen, vol.14, pp.151-160, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00683854

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al., High content screening identifies decaprenyl-phosphoribose 2 0 epimerase as a target for intracellular antimycobacterial inhibitors, PLoS Pathog, vol.5, p.1000645, 2009.

R. S. Flannagan, G. Cosío, G. , and S. , Antimicrobial mechanisms of phagocytes and bacterial evasion strategies, Nat. Rev. Microbiol, vol.7, pp.355-366, 2009.

J. W. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nat. Rev. Microbiol, vol.2, pp.898-907, 2004.

M. Hamon, H. Bierne, C. , and P. , Listeria monocytogenes: a multifaceted model, Nat. Rev. Microbiol, vol.4, pp.423-434, 2006.

T. Kamura, K. Maenaka, S. Kotoshiba, M. Matsumoto, D. Kohda et al., VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases, Genes Dev, vol.18, pp.3055-3065, 2004.

S. H. Kaufmann, Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff, Nat. Immunol, vol.9, pp.705-712, 2008.

C. C. Khor, F. O. Vannberg, S. J. Chapman, H. Guo, S. H. Wong et al., CISH and susceptibility to infectious diseases, N. Engl. J. Med, vol.362, pp.2092-2101, 2010.

M. Koo, S. Subbian, and G. Kaplan, Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages, Cell Commun. Signal, vol.10, 2012.

T. Landsman and D. J. Waxman, Role of the cytokine-induced SH2 domain-containing protein CIS in growth hormone receptor internalization, J. Biol. Chem, vol.280, pp.37471-37480, 2005.

A. Lehtonen, S. Matikainen, M. Miettinen, J. , and I. , Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation, J. Leukoc. Biol, vol.71, pp.511-519, 2002.

L. Majlessi and R. Brosch, Mycobacterium tuberculosis meets the cytosol: the role of cGAS in anti-mycobacterial immunity, Cell Host Microbe, vol.17, pp.733-735, 2015.

M. Masuhara, H. Sakamoto, A. Matsumoto, R. Suzuki, H. Yasukawa et al., Cloning and characterization of novel CIS family genes, Biochem. Biophys. Res. Commun, vol.239, pp.439-446, 1997.

A. Matsumoto, Y. Seki, M. Kubo, S. Ohtsuka, A. Suzuki et al., Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokineinducible SH2-containing protein 1 transgenic mice, Mol. Cell. Biol, vol.19, pp.6396-6407, 1999.

J. A. Mcdonough, H. J. Newton, S. Klum, R. Swiss, H. Agaisse et al., Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening, MBio, vol.4, pp.606-00612, 2013.

K. Pethe, D. L. Swenson, S. Alonso, J. Anderson, C. Wang et al., Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation, Proc. Natl. Acad. Sci. USA, vol.101, pp.13642-13647, 2004.

J. A. Philips, E. , and J. D. , Tuberculosis pathogenesis and immunity, Annu. Rev. Pathol, vol.7, pp.353-384, 2012.

, Cell Reports, vol.20, p.3197, 2017.

J. Piessevaux, L. De-ceuninck, D. Catteeuw, F. Peelman, and J. Tavernier, Elongin B/C recruitment regulates substrate binding by CIS, J. Biol. Chem, vol.283, pp.21334-21346, 2008.

C. J. Queval, O. R. Song, V. Delorme, R. Iantomasi, R. Veyron-churlet et al., A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening, J. Vis. Exp, vol.83, 2014.

C. J. Queval, O. R. Song, N. Deboosè-re, V. Delorme, A. S. Debrie et al., STAT3 represses nitric oxide synthesis in human macrophages upon Mycobacterium tuberculosis infection, Sci. Rep, vol.6, p.29297, 2016.

A. Rascle and E. Lees, Chromatin acetylation and remodeling at the Cis promoter during STAT5-induced transcription, Nucleic Acids Res, vol.31, pp.6882-6890, 2003.

D. G. Russell, Mycobacterium tuberculosis: here today, and here tomorrow, Nat. Rev. Mol. Cell Biol, vol.2, pp.569-577, 2001.

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, L. Majlessi et al., Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

R. Simeone, F. Sayes, O. Song, M. I. Grö-schel, P. Brodin et al., Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo, PLoS Pathog, vol.11, p.1004650, 2015.

S. A. Stanley, J. E. Johndrow, P. Manzanillo, and J. S. Cox, The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis, J. Immunol, vol.178, pp.3143-3152, 2007.

S. Sturgill-koszycki, P. H. Schlesinger, P. Chakraborty, P. L. Haddix, H. L. Collins et al., Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, vol.263, pp.678-681, 1994.

G. H. Sun-wada, H. Tabata, N. Kawamura, M. Aoyama, and Y. Wada, Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification, J. Cell Sci, vol.122, pp.2504-2513, 2009.

N. Van-der-wel, D. Hava, D. Houben, D. Fluitsma, M. Van-zon et al., M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, pp.1287-1298, 2007.

F. Verdier, S. Chré-tien, O. Muller, P. Varlet, A. Yoshimura et al., Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein, J. Biol. Chem, vol.273, pp.28185-28190, 1998.

O. V. Vieira, R. J. Botelho, G. , and S. , Phagosome maturation: aging gracefully, Biochem. J, vol.366, pp.689-704, 2002.

J. Wang, J. L. Teng, D. Zhao, P. Ge, B. Li et al., , 2016.

, The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection, Sci. Rep, vol.6, p.34827

D. Wong, H. Bach, J. Sun, Z. Hmama, A. et al., Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification, Proc. Natl. Acad. Sci. USA, vol.108, pp.19371-19376, 2011.

A. Yoshimura, T. Ohkubo, T. Kiguchi, N. A. Jenkins, D. J. Gilbert et al., A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors, EMBO J, vol.14, pp.2816-2826, 1995.

A. Yoshimura, T. Naka, and M. Kubo, SOCS proteins, cytokine signalling and immune regulation, Nat. Rev. Immunol, vol.7, pp.454-465, 2007.

A. Yoshimura, M. Suzuki, R. Sakaguchi, T. Hanada, Y. et al., SOCS, inflammation, and autoimmunity. Front. Immunol, vol.3, p.20, 2012.

J. G. Zhang, A. Farley, S. E. Nicholson, T. A. Willson, L. M. Zugaro et al., The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation, Proc. Natl. Acad. Sci. USA, vol.96, pp.2071-2076, 1999.

W. Zhang, G. Z. Cheng, J. Gong, U. Hermanto, C. S. Zong et al., RACK1 and CIS mediate the degradation of BimEL in cancer cells, J. Biol. Chem, vol.283, pp.16416-16426, 2008.

J. Zhao, K. Beyrakhova, Y. Liu, C. P. Alvarez, S. A. Bueler et al., Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein, PLoS Pathog, vol.13, 2017.