A. M. Abdallah, G. Van-pittius, N. C. Champion, P. A. Cox, J. Luirink et al., Type VII secretion system of mycobacteria show the way, Nat. Rev. Microbiol, vol.5, pp.883-891, 2007.

J. Aguilo, H. Alonso, S. Uranga, D. Marinova, A. Arbues et al., ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis, Cell Microbiol, vol.15, 1994.

N. Aguilo, J. Gonzalo-asensio, S. Alvarez-arguedas, D. Marinova, A. B. Gomez et al., Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis, Nat. Commun, vol.8, p.16085, 2017.

K. Andries, P. Verhasselt, J. Guillemont, H. W. Gohlmann, J. M. Neefs et al., A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, vol.307, pp.223-227, 2005.

J. A. Armstrong, H. , and P. D. , Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J. Exp. Med, vol.134, pp.713-740, 1971.

C. Astarie-dequeker, L. Le-guyader, W. Malaga, F. K. Seaphanh, C. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLOS Pathog, vol.5, p.1000289, 2009.

C. Astarie-dequeker, E. N. N'diaye, V. Le-cabec, M. G. Rittig, J. Prandi et al., The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages, Infect. Immun, vol.67, pp.469-477, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00178911

J. Augenstreich, A. Arbues, R. Simeone, E. Haanappel, A. Wegener et al., ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis, Cell Microbiol, vol.19, p.12726, 2017.

S. Axelrod, H. Oschkinat, J. Enders, B. Schlegel, V. Brinkmann et al., Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide, Cell Microbiol, vol.10, pp.1530-1545, 2008.

A. Bafica, C. A. Scanga, C. G. Feng, C. Leifer, A. Cheever et al., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis, J. Exp. Med, vol.202, pp.1715-1724, 2005.

A. K. Barczak, R. Avraham, S. Singh, S. S. Luo, W. R. Zhang et al., Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence, PLOS Pathog, vol.13, p.1006363, 2017.

C. E. Barry, . Iii, H. I. Boshoff, V. Dartois, T. Dick et al., The spectrum of latent tuberculosis: rethinking the biology and intervention strategies, Nat. Rev. Microbiol, vol.7, pp.845-855, 2009.

K. S. Beckham, L. Ciccarelli, C. M. Bunduc, H. D. Mertens, R. Ummels et al., Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis, Nat. Microbiol, vol.2, p.17047, 2017.

S. M. Behar, M. Divangahi, R. , and H. G. , Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?, Nat. Rev. Microbiol, vol.8, pp.668-674, 2010.

S. M. Behar, C. J. Martin, M. G. Booty, T. Nishimura, X. Zhao et al., Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis, Mucosal Immunol, vol.4, pp.279-287, 2011.

E. C. Boritsch, W. Frigui, A. Cascioferro, W. Malaga, G. Etienne et al., pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence, Nat. Microbiol, vol.1, p.15019, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01265519

S. Bosedasgupta, P. , and J. , Striking the right balance determines TB or not TB, Front. Immunol, vol.5, p.455, 2014.

D. Bottai, M. Di-luca, L. Majlessi, W. Frigui, R. Simeone et al., Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation, Mol. Microbiol, vol.83, pp.1195-1209, 2012.

D. Bottai, W. Frigui, S. Clark, E. Rayner, A. Zelmer et al., Increased protective efficacy of recombinant BCG strains expressing virulenceneutral proteins of the ESX-1 secretion system, Vaccine, vol.33, pp.2710-2718, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01182937

D. Bottai, A. Serafini, A. Cascioferro, R. Brosch, and R. Manganelli, Targeting type VII/ESX secretion systems for development of novel antimycobacterial drugs, Curr. Pharm. Des, vol.20, pp.4346-4356, 2014.

D. M. Bowdish, K. Sakamoto, M. J. Kim, M. Kroos, S. Mukhopadhyay et al., MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis, PLOS Pathog, vol.5, p.1000474, 2009.

P. J. Brennan and H. Nikaido, The envelope of mycobacteria, Annu. Rev. Biochem, vol.64, pp.29-63, 1995.

C. J. Cambier, S. Falkow, R. , and L. , Host evasion and exploitation schemes of Mycobacterium tuberculosis, Cell, vol.159, pp.1497-1509, 2014.

C. J. Cambier, S. M. O'leary, M. P. O'sullivan, J. Keane, R. et al., Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages, Immunity, vol.47, 2017.

C. Chalut, MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria, Tuberculosis, vol.100, pp.32-45, 2016.

J. M. Chen, F. Pojer, B. Blasco, C. , and S. T. , Towards anti-virulence drugs targeting ESX-1 mediated pathogenesis of Mycobacterium tuberculosis, Drug Discov. Today, vol.7, pp.25-31, 2010.

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al., High content screening identifies decaprenylphosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLOS Pathog, vol.5, p.1000645, 2009.

D. L. Clemens and M. A. Horwitz, Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, J. Exp. Med, vol.181, pp.257-270, 1995.

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

A. C. Collins, H. Cai, T. Li, L. H. Franco, X. D. Li et al., Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis, Cell Host Microbe, vol.17, pp.820-828, 2015.

W. H. Conrad, M. M. Osman, J. K. Shanahan, F. Chu, K. K. Takaki et al., Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.1371-1376, 2017.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.19484-19491, 2011.

M. Daffe, D. C. Crick, J. , and M. , Genetics of capsular polysaccharides and cell envelope (Glyco)lipids. Microbiol. Spectr. 2, 14, 2014.

T. Dallenga, U. Repnik, B. Corleis, J. Eich, R. Reimer et al., M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages, Cell Host Microbe, vol.22, pp.519-530, 2017.

J. M. Davis, R. , and L. , The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, pp.37-49, 2009.

A. H. Diacon, A. Pym, M. Grobusch, R. Patientia, R. Rustomjee et al., The diarylquinoline TMC207 for multidrug-resistant tuberculosis, N. Engl. J. Med, vol.360, pp.2397-2405, 2009.

P. Dinadayala, A. Lemassu, P. Granovski, S. Cerantola, N. Winter et al., Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains, J. Biol. Chem, vol.279, pp.12369-12378, 2004.

S. Ehrt and D. Schnappinger, Mycobacterial survival strategies in the phagosome: defence against host stresses, Cell Microbiol, vol.11, pp.1170-1178, 2009.

R. A. Fratti, J. M. Backer, J. Gruenberg, S. Corvera, and V. Deretic, Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest, J. Cell Biol, vol.154, pp.631-644, 2001.

R. A. Fratti, J. Chua, I. Vergne, and V. Deretic, Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.5437-5442, 2003.

M. Gengenbacher, N. Nieuwenhuizen, A. Vogelzang, H. Liu, P. Kaiser et al., Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG DeltaureC::hly improves protection against tuberculosis, vol.7, pp.679-695, 2016.

M. I. Groschel, F. Sayes, S. J. Shin, W. Frigui, A. Pawlik et al., Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection, Cell Rep, vol.18, pp.2752-2765, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01503927

M. I. Gröschel, F. Sayes, R. Simeone, L. Majlessi, and R. Brosch, ESX secretion systems: mycobacterial evolution to counter host immunity, Nat. Rev. Microbiol, vol.14, pp.677-691, 2016.

J. Gruenberg and F. G. Van-der-goot, Mechanisms of pathogen entry through the endosomal compartments, Nat. Rev. Mol. Cell Biol, vol.7, pp.495-504, 2006.

M. G. Gutierrez, Functional role(s) of phagosomal Rab GTPases, Small GTPases, vol.4, pp.148-158, 2013.

D. Houben, C. Demangel, J. Van-ingen, J. Perez, L. Baldeon et al., ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell Microbiol, vol.14, pp.1287-1298, 2012.

M. Hoyer-hansen, S. P. Nordbrandt, J. , and M. , Autophagy as a basis for the health-promoting effects of vitamin D, Trends Mol. Med, vol.16, pp.295-302, 2010.

E. Ishikawa, T. Ishikawa, Y. S. Morita, K. Toyonaga, H. Yamada et al., Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle, J. Exp. Med, vol.206, pp.2879-2888, 2009.

S. V. Jamwal, P. Mehrotra, A. Singh, Z. Siddiqui, A. Basu et al., Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism, Sci. Rep, vol.6, p.23089, 2016.

R. Jayachandran, V. Sundaramurthy, B. Combaluzier, P. Mueller, H. Korf et al., Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin, Cell, vol.130, pp.37-50, 2007.

B. K. Johnson, C. J. Colvin, D. B. Needle, F. Mba-medie, P. A. Champion et al., The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence, Antimicrob. Agents Chemother, vol.59, pp.4436-4445, 2015.

P. B. Kang, A. K. Azad, J. B. Torrelles, T. M. Kaufman, A. Beharka et al., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis, J. Exp. Med, vol.202, pp.987-999, 2005.

B. Kasmapour, A. Gronow, C. K. Bleck, W. Hong, and M. G. Gutierrez, Size-dependent mechanism of cargo sorting during lysosome-phagosome fusion is controlled by Rab34, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.20485-20490, 2012.

A. Kupz, U. Zedler, M. Staber, C. Perdomo, A. Dorhoi et al., ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo, J. Clin. Invest, vol.126, pp.2109-2122, 2016.

M. Lamkanfi and V. M. Dixit, Manipulation of host cell death pathways during microbial infections, Cell Host Microbe, vol.8, pp.44-54, 2010.

L. Chevalier, F. Cascioferro, A. Frigui, W. Pawlik, A. Boritsch et al., Revisiting the role of phospholipases C in the virulence of Mycobacterium tuberculosis, Sci. Rep, vol.5, p.16918, 2015.

E. S. Leake, Q. N. Myrvik, W. , and M. J. , Phagosomal membranes of Mycobacterium bovis BCG-immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis H37Rv, Infect. Immun, vol.45, pp.443-446, 1984.

J. Lee, T. Repasy, K. Papavinasasundaram, C. Sassetti, K. et al., Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages, PLOS ONE, vol.6, 2011.

T. R. Lerner, S. Borel, D. J. Greenwood, U. Repnik, M. R. Russell et al., Mycobacterium tuberculosis replicates within necrotic human macrophages, J. Cell Biol, vol.216, pp.583-594, 2017.

P. T. Liu, S. Stenger, H. Li, L. Wenzel, B. H. Tan et al., Tolllike receptor triggering of a vitamin D-mediated human antimicrobial response, Science, vol.311, pp.1770-1773, 2006.

L. S. Lobato, P. S. Rosa, S. Ferreira-jda, S. Neumann-ada, M. G. Da-silva et al., Statins increase rifampin mycobactericidal effect, Antimicrob. Agents Chemother, vol.58, pp.5766-5774, 2014.

G. Lugo-villarino, D. Hudrisier, A. Tanne, and O. Neyrolles, C-type lectins with a sweet spot for Mycobacterium tuberculosis, Eur. J. Microbiol. Immunol, vol.1, pp.25-40, 2011.

L. Majlessi and R. Brosch, Mycobacterium tuberculosis meets the cytosol: the role of cGAS in anti-mycobacterial immunity, Cell Host Microbe, vol.17, pp.733-735, 2015.

P. S. Manzanillo, J. S. Ayres, R. O. Watson, A. C. Collins, G. Souza et al., The ubiquitin ligase parkin mediates resistance to intracellular pathogens, Nature, vol.501, pp.512-516, 2013.

P. S. Manzanillo, M. U. Shiloh, D. A. Portnoy, and J. S. Cox, Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages, Cell Host Microbe, vol.11, pp.469-480, 2012.

D. Marinova, J. Gonzalo-asensio, N. Aguilo, M. , and C. , MTBVAC from discovery to clinical trials in tuberculosis-endemic countries, Expert Rev. Vaccines, vol.16, pp.565-576, 2017.

K. A. Mcdonough, Y. Kress, and B. R. Bloom, Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages, Infect. Immun, vol.61, pp.2763-2773, 1993.

A. Mishra, S. Akhtar, C. Jagannath, and A. Khan, Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: emerging concepts and perspectives, Mol. Immunol, vol.87, pp.240-248, 2017.

E. Mortaz, I. M. Adcock, P. Tabarsi, M. R. Masjedi, D. Mansouri et al., Interaction of pattern recognition receptors with Mycobacterium tuberculosis, J. Clin. Immunol, vol.35, pp.1-10, 2015.

Q. N. Myrvik, E. S. Leake, W. , and M. J. , Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence, Am. Rev. Respir. Dis, vol.129, pp.322-328, 1984.

J. Nigou, C. Zelle-rieser, M. Gilleron, M. Thurnher, P. et al., Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor, J. Immunol, vol.166, pp.7477-7485, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00177977

A. O'garra, P. S. Redford, F. W. Mcnab, C. I. Bloom, R. J. Wilkinson et al., The immune response in tuberculosis, Annu. Rev. Immunol, vol.31, pp.475-527, 2013.

I. M. Orme, R. T. Robinson, C. , and A. M. , The balance between protective and pathogenic immune responses in the TB-infected lung, Nat. Immunol, vol.16, pp.57-63, 2015.

S. P. Parihar, R. Guler, R. Khutlang, D. M. Lang, R. Hurdayal et al., Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation, J. Infect. Dis, vol.209, pp.754-763, 2014.

C. Passemar, A. Arbues, W. Malaga, I. Mercier, F. Moreau et al., Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions, Cell Microbiol, vol.16, pp.195-213, 2014.

E. C. Patin, A. C. Geffken, S. Willcocks, C. Leschczyk, A. Haas et al., Trehalose dimycolate interferes with FcgammaR-mediated phagosome maturation through Mincle, SHP-1 and FcgammaRIIB signalling, PLOS ONE, vol.12, 2017.

T. Paulson, Epidemiology: a mortal foe, Nature, vol.502, 2013.

K. Pethe, P. Bifani, J. Jang, S. Kang, S. Park et al., Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis, Nat. Med, vol.19, pp.1157-1160, 2013.

A. Prashar, L. Schnettger, E. M. Bernard, and M. G. Gutierrez, Rab GTPases in immunity and inflammation, Front. Cell Infect. Microbiol, vol.7, p.435, 2017.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, C. et al., Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol. Microbiol, vol.46, pp.709-717, 2002.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nat. Med, vol.9, pp.533-539, 2003.

V. Quesniaux, C. Fremond, M. Jacobs, S. Parida, D. Nicolle et al., Toll-like receptor pathways in the immune responses to mycobacteria, Microbes Infect, vol.6, pp.946-959, 2004.

C. J. Queval, O. R. Song, J. P. Carralot, J. M. Saliou, A. Bongiovanni et al., Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signalling, Cell Rep, vol.20, pp.3188-3198, 2017.

J. Quigley, V. K. Hughitt, C. A. Velikovsky, R. A. Mariuzza, N. M. El-sayed et al., The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis, vol.8, pp.148-165, 2017.

A. Romagnoli, M. P. Etna, E. Giacomini, M. Pardini, M. E. Remoli et al., ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells, Autophagy, vol.8, pp.1357-1370, 2012.

D. G. Russell, The ins and outs of the Mycobacterium tuberculosiscontaining vacuole, Cell Microbiol, vol.18, pp.1065-1069, 2016.

D. G. Russell, P. J. Cardona, M. J. Kim, S. Allain, A. et al., Foamy macrophages and the progression of the human tuberculosis granuloma, Nat. Immunol, vol.10, pp.943-948, 2009.

J. Rybniker, J. M. Chen, C. Sala, R. C. Hartkoorn, A. Vocat et al., Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion, Cell Host Microbe, vol.16, pp.538-548, 2014.

E. T. Sakowski, S. Koster, C. Celhay, H. S. Park, E. Shrestha et al., Ubiquilin 1 promotes IFN-gamma-induced xenophagy of Mycobacterium tuberculosis, PLOS Pathog, vol.11, 2015.

T. Satoh, A. , and S. , Toll-like receptor signaling and its inducible proteins, Microbiol. Spectr, vol.4, 2016.

F. Sayes, A. Pawlik, W. Frigui, M. I. Groschel, S. Crommelynck et al., CD4+ T cells recognizing PE/PPE antigens directly or via cross reactivity are protective against pulmonary Mycobacterium tuberculosis infection, PLOS Pathog, vol.12, p.1005770, 2016.

F. Sayes, L. Sun, M. Di-luca, R. Simeone, N. Degaiffier et al., Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 Type VII secretion-encoded PE-PPE proteins predicts vaccine potential, Cell Host Microbe, vol.11, pp.352-363, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01104794

L. Schnettger, A. Rodgers, U. Repnik, R. P. Lai, G. Pei et al., A Rab20-Dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity, Cell Host Microbe, vol.21, 2017.

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, L. Majlessi et al., Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLOS Pathog, vol.8, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

R. Simeone, L. Majlessi, J. Enninga, and R. Brosch, Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access, Cell Microbiol, vol.18, pp.1070-1077, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01899438

R. Simeone, F. Sayes, O. Song, M. I. Groschel, P. Brodin et al., , 2015.

, Cytosolic Access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo, PLOS Pathog, vol.11, p.1004650

C. Skerry, M. L. Pinn, N. Bruiners, R. Pine, M. L. Gennaro et al., Simvastatin increases the in vivo activity of the first-line tuberculosis regimen, J. Antimicrob. Chemother, vol.69, pp.2453-2457, 2014.

S. Sturgill-koszycki, P. H. Schlesinger, P. Chakraborty, P. L. Haddix, H. L. Collins et al., Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, vol.263, pp.678-681, 1994.

G. H. Sun-wada, H. Tabata, N. Kawamura, M. Aoyama, and Y. Wada, Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification, J. Cell Sci, vol.122, pp.2504-2513, 2009.

L. Tailleux, N. Maeda, J. Nigou, B. Gicquel, and O. Neyrolles, How is the phagocyte lectin keyboard played? Master class lesson by Mycobacterium tuberculosis, Trends Microbiol, vol.11, pp.102-103, 2003.

A. Tanne and O. Neyrolles, C-type lectins in immune defense against pathogens: the murine DC-SIGN homologue SIGNR3 confers early protection against Mycobacterium tuberculosis infection, Virulence, vol.1, pp.285-290, 2010.

T. L. Thurston, M. P. Wandel, N. Von-muhlinen, A. Foeglein, R. et al., Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion, Nature, vol.482, pp.414-418, 2012.

D. M. Tobin, Host-directed therapies for tuberculosis. Cold Spring Harb, Perspect. Med, vol.5, p.21196, 2015.

E. Torrado, C. , and A. M. , Cytokines in the balance of protection and pathology during mycobacterial infections, Adv. Exp. Med. Biol, vol.783, pp.121-140, 2013.

K. Toyonaga, S. Torigoe, Y. Motomura, T. Kamichi, J. M. Hayashi et al., C-Type lectin receptor DCAR recognizes mycobacterial phosphatidyl-inositol mannosides to promote a Th1 response during infection, Immunity, vol.45, pp.1245-1257, 2016.

H. J. Ullrich, W. L. Beatty, R. , and D. G. , Direct delivery of procathepsin D to phagosomes: implications for phagosome biogenesis and parasitism by Mycobacterium, Eur. J. Cell Biol, vol.78, issue.99, pp.80042-80051, 1999.

T. Ulrichs and S. H. Kaufmann, New insights into the function of granulomas in human tuberculosis, J. Pathol, vol.208, pp.261-269, 2006.

F. L. Van-de-veerdonk, A. C. Teirlinck, J. Kleinnijenhuis, B. J. Kullberg, R. Van-crevel et al., Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1, J. Leukoc. Biol, vol.88, pp.227-232, 2010.

N. Van-der-wel, D. Hava, D. Houben, D. Fluitsma, M. Van-zon et al., M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, pp.1287-1298, 2007.

A. Van-rie, E. , and D. , XDR tuberculosis: an indicator of public-health negligence, Lancet, vol.368, pp.69575-69580, 2006.

B. C. Vanderven, R. J. Fahey, W. Lee, Y. Liu, R. B. Abramovitch et al., Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment, PLOS Pathog, vol.11, 2015.

C. L. Vazquez, A. Rodgers, S. Herbst, S. Coade, A. Gronow et al., The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages, Sci. Rep, vol.6, p.29332, 2016.

K. Velmurugan, B. Chen, J. L. Miller, S. Azogue, S. Gurses et al., Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells, PLOS Pathog, vol.3, p.110, 2007.

I. Vergne, J. Chua, H. H. Lee, M. Lucas, J. Belisle et al., Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.4033-4038, 2005.

I. Vergne, R. A. Fratti, P. J. Hill, J. Chua, J. Belisle et al., Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion, Mol. Biol. Cell, vol.15, pp.751-760, 2004.

L. E. Via, D. Deretic, R. J. Ulmer, N. S. Hibler, L. A. Huber et al., Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7, J. Biol. Chem, vol.272, pp.13326-13331, 1997.

O. V. Vieira, R. J. Botelho, G. , and S. , Phagosome maturation: aging gracefully, Biochem. J, vol.366, pp.689-704, 2002.

C. Villeneuve, M. Gilleron, I. Maridonneau-parini, M. Daffe, C. Astariedequeker et al., Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process, J. Lipid Res, vol.46, pp.475-483, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078727

R. S. Wallis and R. Hafner, Advancing host-directed therapy for tuberculosis, Nat. Rev. Immunol, vol.15, pp.255-263, 2015.

D. F. Warner and V. Mizrahi, The survival kit of Mycobacterium tuberculosis, Nat. Med, vol.13, pp.282-284, 2007.

R. Wassermann, M. F. Gulen, C. Sala, S. G. Perin, Y. Lou et al., Mycobacterium tuberculosis differentially activates cGAS-and inflammasome-dependent intracellular immune responses through ESX-1, Cell Host Microbe, vol.17, pp.799-810, 2015.

R. O. Watson, S. L. Bell, D. A. Macduff, J. M. Kimmey, E. J. Diner et al., The cytosolic sensor cGAS Detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy, Cell Host Microbe, vol.17, pp.811-819, 2015.

R. O. Watson, P. S. Manzanillo, and J. S. Cox, Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway, Cell, vol.150, pp.803-815, 2012.

M. Wheelwright, E. W. Kim, M. S. Inkeles, A. De-leon, M. Pellegrini et al., All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2, J. Immunol, vol.192, pp.2280-2290, 2014.

, WHO, 2016.

D. Wong, H. Bach, J. Sun, Z. Hmama, A. et al., Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+ATPase to inhibit phagosome acidification, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.19371-19376, 2011.

K. W. Wong and W. R. Jacobs, Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis, Cell Microbiol, vol.13, pp.1371-1384, 2011.

S. Xu, A. Cooper, S. Sturgill-koszycki, T. Van-heyningen, D. Chatterjee et al., Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages, J. Immunol, vol.153, pp.2568-2578, 1994.

A. Yonekawa, S. Saijo, Y. Hoshino, Y. Miyake, E. Ishikawa et al., Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria, Immunity, vol.41, pp.402-413, 2014.

J. M. Yuk, D. M. Shin, H. M. Lee, C. S. Yang, H. S. Jin et al., Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin, Cell Host Microbe, vol.6, pp.231-243, 2009.

X. Zhang, F. Jiang, L. Wei, F. Li, J. Liu et al., Polymorphic allele of human MRC1 confer protection against tuberculosis in a Chinese population, Int. J. Biol. Sci, vol.8, pp.375-382, 2012.

A. Zumla, M. Maeurer, J. Chakaya, M. Hoelscher, F. Ntoumi et al., Towards host-directed therapies for tuberculosis, Nat. Rev. Drug Discov, vol.14, pp.511-512, 2015.