A. M. Abdallah, N. C. Gey-van-pittius, P. A. Digiuseppe-champion, J. Cox, J. Luirink et al., Type VII secretion-mycobacteria show the way, Nat. Rev. Microbiol, vol.5, pp.883-891, 2007.

A. M. Abdallah, N. D. Savage, M. Van-zon, L. Wilson, C. M. Vandenbroucke-grauls et al., The ESX-5 Secretion System of Mycobacterium marinum Modulates the Macrophage Response, J. Immunol, vol.181, pp.7166-7175, 2008.

A. M. Abdallah, T. Verboom, E. M. Weerdenburg, N. C. Gey-van-pittius, P. W. Mahasha et al., PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5, Mol. Microbiol, vol.73, pp.329-340, 2009.

A. Afonso-barroso, S. O. Clark, A. Williams, G. Rosa, C. Nóbrega et al., Lipoarabinomannan mannose caps do not affect mycobacterial virulence or the induction of protective immunity in experimental animal models of infection and have minimal impact on in vitro inflammatory responses, Cell. Microbiol, vol.15, pp.660-674, 2012.

J. I. Aguilo, H. Alonso, S. Uranga, D. Marinova, A. Arbués et al., ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis, Cell. Microbiol, vol.15, 1994.

N. Aguilo, J. Gonzalo-asensio, S. Alvarez-arguedas, D. Marinova, A. B. Gomez et al., Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis, Nat. Commun, vol.8, p.16085, 2017.

S. Angala, . Kumar, M. R. Mcneil, L. Shi, M. Joe et al., Biosynthesis of the Methylthioxylose Capping Motif of Lipoarabinomannan in Mycobacterium tuberculosis, ACS Chem. Biol, vol.12, pp.682-691, 2017.

C. Astarie-dequeker, L. L. Guyader, W. Malaga, F. Seaphanh, C. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLoS Pathog, vol.5, 2009.

L. S. Ates, R. Ummels, S. Commandeur, R. Van-de-weerd, R. Van-der-weerd et al., Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria, PLoS Genet, vol.11, 2015.

L. S. Ates, A. Dippenaar, F. Sayes, A. Pawlik, C. Bouchier et al., Unexpected genomic and phenotypic diversity of Mycobacterium africanum Lineage 5, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01884644

J. Madacki, Infection, Genetics and Evolution xxx (xxxx) xxx-xxx affects drug resistance, protein secretion and immunogenicity, Genome Biol Evol, vol.10, pp.1858-1874

L. S. Ates, A. Dippenaar, R. Ummels, S. R. Piersma, A. D. Van-der-woude et al., Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis, Nat. Microbiol, vol.3, pp.181-188, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046016

L. S. Ates, F. Sayes, W. Frigui, R. Ummels, M. P. Damen et al., RD5 deletion-mediated lack of PE_PGRS and PPE-MPTR 1 export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection, PLoS Pathog, vol.14, 2018.

J. Augenstreich, A. Arbues, R. Simeone, E. Haanappel, A. Wegener et al., ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis, Cell. Microbiol, 2017.

D. Barkan, D. Hedhli, H. Yan, K. Huygen, and M. S. Glickman, Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice, Infect. Immun, vol.80, pp.21-33, 2012.

P. F. Barnes, V. Mehra, B. Rivoire, S. J. Fong, P. J. Brennan et al., Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis, J. Immunol, vol.148, pp.1835-1840, 1992.

I. Barry, C. E. Lee, R. E. Mdluli, K. Sampson, A. E. Schroeder et al., Mycolic acids: structure, biosynthesis and physiological functions, Prog. Lipid Res, vol.37, pp.8-11, 1998.

K. S. Beckham, L. Ciccarelli, C. M. Bunduc, H. D. Mertens, R. Ummels et al., Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis, Nat. Microbiol, vol.2, p.17047, 2017.

A. Bekierkunst, Acute granulomatous response produced in mice by trehalose-6,6dimycolate, J. Bacteriol, vol.96, pp.958-961, 1968.

J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan et al., role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis, Science, vol.276, pp.1420-1422, 1997.

F. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel, A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10), Microbiology, vol.144, pp.3195-3203, 1998.

A. Bhatt, N. Fujiwara, K. Bhatt, S. S. Gurcha, L. Kremer et al., Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice, Proc. Natl. Acad. Sci, vol.104, pp.5157-5162, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00143534

L. Blanc, M. Gilleron, J. Prandi, O. Song, M. Jang et al., Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids, Proc. Natl. Acad. Sci, vol.114, pp.11205-11210, 2017.

H. Bloch and H. Noll, Studies on the virulence of tubercle bacilli. The effect of cord factor on murine tuberculosis, Br. J. Exp. Pathol, vol.36, pp.8-17, 1955.

E. C. Boritsch, W. Frigui, A. Cascioferro, W. Malaga, G. Etienne et al., pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence, Nat. Microbiol, vol.1, p.15019, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01265519

E. C. Boritsch, V. Khanna, A. Pawlik, N. Honore, V. H. Navas et al., Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.9876-9881, 2016.

K. I. Bos, K. M. Harkins, A. Herbig, M. Coscolla, N. Weber et al., Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis, Nature, vol.514, pp.494-497, 2014.

D. Bottai, M. Di-luca, L. Majlessi, W. Frigui, R. Simeone et al., Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation, Mol. Microbiol, vol.83, pp.1195-1209, 2012.

P. J. Brennan and H. Nikaido, The Envelope of Mycobacteria, Annu. Rev. Biochem, vol.64, pp.29-63, 1995.

P. Brodin, K. Eiglmeier, M. Marmiesse, A. Billault, T. Garnier et al., bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant, Infect. Immun, vol.70, pp.5568-5578, 2002.

P. Brodin, I. Rosenkrands, P. Andersen, S. T. Cole, and R. Brosch, ESAT-6 proteins: protective antigens and virulence factors?, Trends Microbiol, vol.12, pp.500-508, 2004.

R. Brosch, S. V. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser et al., A new evolutionary scenario for the Mycobacterium tuberculosis complex, Proc. Natl. Acad. Sci, vol.99, pp.3684-3689, 2002.

L. R. Camacho, P. Constant, C. Raynaud, M. Lanéelle, J. A. Triccas et al., Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in the cell wall permeability barrier, J. Biol. Chem, vol.276, pp.19845-19854, 2001.

S. Cantaloube, R. Veyron-churlet, N. Haddache, M. Daffé, and D. Zerbib, The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01883511

D. Chatterjee, K. Lowell, B. Rivoire, M. R. Mcneil, and P. J. Brennan, Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains, J. Biol. Chem, vol.267, pp.6234-6239, 1992.

L. Chiaradia, C. Lefebvre, J. Parra, J. Marcoux, O. Burlet-schiltz et al., Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane, Sci. Rep, vol.7, 2017.

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

A. C. Collins, H. Cai, T. Li, L. H. Franco, X. Li et al., Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis, Cell Host Microbe, vol.17, pp.820-828, 2015.

I. Comas, M. Coscolla, T. Luo, S. Borrell, K. E. Holt et al., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nat. Genet, vol.45, pp.1176-1182, 2013.

W. H. Conrad, M. M. Osman, J. K. Shanahan, F. Chu, K. K. Takaki et al., Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.1371-1376, 2017.

P. Constant, E. Perez, W. Malaga, M. Lanéelle, O. Saurel et al., Role of the pks15/1 Gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex: evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene, J. Biol. Chem, vol.277, pp.38148-38158, 2002.

A. M. Crowe, I. Casabon, K. L. Brown, J. Liu, J. Lian et al., catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria, mBio, vol.8, 2017.

A. M. Crowe, S. D. Workman, N. Watanabe, L. J. Worrall, N. C. Strynadka et al., IpdAB, a virulence factor in Mycobacterium tuberculosis, is a cholesterol ringcleaving hydrolase, Proc. Natl. Acad. Sci, 2018.

M. Daffé and P. Draper, The envelope layers of mycobacteria with reference to their pathogenicity, Advances in Microbial Physiology, pp.60016-60024, 1997.

J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages, PLoS Pathog, vol.7, 2011.

O. Danilchanka, J. Sun, M. Pavlenok, C. Maueröder, A. Speer et al., An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity, Proc. Natl. Acad. Sci, vol.111, pp.6750-6755, 2014.

D. N. Dao, K. Sweeney, T. Hsu, S. S. Gurcha, I. P. Nascimento et al., Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production, PLoS Pathog, 2008.

B. C. De-jong, M. Antonio, and S. Gagneux, Mycobacterium africanum-review of an important cause of human tuberculosis in West Africa, PLoS Negl. Trop. Dis, vol.4, 2010.

G. Degiacomi, A. Benjak, J. Madacki, F. Boldrin, R. Provvedi et al., Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression, Sci. Rep, vol.7, 2017.

B. Dey, R. J. Dey, L. S. Cheung, S. Pokkali, H. Guo et al., A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis, Nat. Med, vol.21, pp.401-406, 2015.

R. J. Dey, B. Dey, Y. Zheng, L. S. Cheung, J. Zhou et al., Genetics and Evolution

G. Lamichhane, H. O. Sintim, and W. R. Bishai, Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase, Nat. Chem. Biol, vol.13, pp.210-217, 2017.

D. Luca, M. Bottai, D. Batoni, G. Orgeur, M. Aulicino et al., The ESX-5 Associated eccB5-eccC5 locus is essential for Mycobacterium tuberculosis viability, PLoS One, vol.7, 2012.

H. K. Dkhar, R. Nanduri, S. Mahajan, S. Dave, A. Saini et al., Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: A case of a heterologous and noncanonical ligand-receptor pair, J. Immunol, vol.193, pp.295-305, 2014.

E. Dubnau, J. Chan, C. Raynaud, V. P. Mohan, M. Lanéelle et al., Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice, Mol. Microbiol, vol.36, pp.630-637, 2000.

E. Dumas, C. Boritsch, E. Vandenbogaert, M. Vega, R. De-la et al., Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems, Genome Biol. Evol, vol.8, pp.387-402, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291528

D. C. Ekiert, G. Bhabha, G. L. Isom, G. Greenan, S. Ovchinnikov et al., architectures of lipid transport systems for the bacterial outer membrane, Cell, vol.169, issue.2, 2017.

R. A. Fratti, J. Chua, I. Vergne, and V. Deretic, Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proc. Natl. Acad. Sci, vol.100, pp.5437-5442, 2003.

D. E. Geiman, T. R. Raghunand, N. Agarwal, and W. R. Bishai, Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes, Antimicrob. Agents Chemother, vol.50, pp.2836-2841, 2006.

N. C. Gey-van-pittius, J. Gamieldien, W. Hide, G. D. Brown, R. J. Siezen et al., The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria, Genome Biol, vol.2, 2001.

N. C. Gey-van-pittius, S. L. Sampson, H. Lee, Y. Kim, P. D. Van-helden et al., Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions, BMC Evol. Biol, vol.6, p.95, 2006.

J. Gonzalo-asensio, W. Malaga, A. Pawlik, C. Astarie-dequeker, C. Passemar et al., Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator, Proc. Natl. Acad. Sci. 111, pp.11491-11496, 2014.

J. Gonzalo-asensio, I. Pérez, N. Aguiló, S. Uranga, A. Picó et al., New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages, PLoS Genet, vol.14, 2018.

S. V. Gordon, R. Brosch, A. Billault, T. Garnier, K. Eiglmeier et al., Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays, Mol. Microbiol, vol.32, pp.643-655, 1999.

M. I. Gröschel, F. Sayes, R. Simeone, L. Majlessi, and R. Brosch, ESX secretion systems: mycobacterial evolution to counter host immunity, Nat. Rev. Microbiol, vol.14, pp.677-691, 2016.

M. I. Gröschel, F. Sayes, S. J. Shin, W. Frigui, A. Pawlik et al., Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection, Cell Rep, vol.18, pp.2752-2765, 2017.

A. E. Grzegorzewicz, J. Korduláková, V. Jones, S. E. Born, J. M. Belardinelli et al., A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone, J. Biol. Chem, vol.287, pp.38434-38441, 2012.

A. E. Grzegorzewicz, H. Pham, V. A. Gundi, M. S. Scherman, E. J. North et al., Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane, Nat. Chem. Biol, vol.8, pp.334-341, 2012.

M. A. Horwitz, B. W. Lee, B. J. Dillon, and G. Harth, Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.1530-1534, 1995.

D. Houben, C. Demangel, J. Van-ingen, J. Perez, L. Baldeón et al., ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell. Microbiologica, vol.14, pp.1287-1298, 2012.

E. N. Houben, J. Bestebroer, R. Ummels, L. Wilson, S. R. Piersma et al., Composition of the type VII secretion system membrane complex, Mol. Microbiol, vol.86, pp.472-484, 2012.

T. Hsu, S. M. Hingley-wilson, B. Chen, M. Chen, A. Z. Dai et al., The primary mechanism of attenuation of bacillus Calmette-Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue, Proc. Natl. Acad. Sci, vol.100, pp.12420-12425, 2003.

G. Huet, P. Constant, W. Malaga, M. Lanéelle, K. Kremer et al., A Lipid Profile Typifies the Beijing Strains of Mycobacterium tuberculosis: identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids, J. Biol. Chem, vol.284, pp.27101-27113, 2009.

J. Indrigo, R. L. Hunter, and J. K. Actor, Cord factor trehalose 6,6?-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages, Microbiology, vol.149, pp.2049-2059, 2003.

E. Ishikawa, T. Ishikawa, Y. S. Morita, K. Toyonaga, H. Yamada et al., Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle, J. Exp. Med, vol.206, pp.2879-2888, 2009.

M. Jackson, C. Raynaud, M. Lanéelle, C. Guilhot, C. Laurent-winter et al., Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope, Mol. Microbiol, vol.31, pp.1573-1587, 1999.

M. Joe, D. Sun, H. Taha, G. C. Completo, J. E. Croudace et al., the 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan. absolute stereochemistry, linkage position, conformation, and immunomodulatory activity, J. Am. Chem. Soc, vol.128, pp.5059-5072, 2006.

M. K. Katti, G. Dai, L. Y. Armitige, C. R. Marrero, S. Daniel et al., The ?fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells, Cell. Microbiol, vol.10, pp.1286-1303, 2008.

G. L. Kay, M. J. Sergeant, Z. Zhou, J. Z. Chan, A. Millard et al., Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe, Nat. Commun, vol.6, 2015.

M. Z. Khan, A. Bhaskar, S. Upadhyay, P. Kumari, R. S. Rajmani et al., Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions, J. Biol. Chem, vol.292, pp.16093-16108, 2017.

W. Lee, B. C. Vanderven, R. J. Fahey, and D. G. Russell, Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress, J. Biol. Chem, vol.288, pp.6788-6800, 2013.

F. Levillain, Y. Poquet, L. Mallet, S. Mazères, M. Marceau et al., Horizontal acquisition of a hypoxiaresponsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation, PLoS Pathog, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01708481

Y. Lou, J. Rybniker, C. Sala, and S. T. Cole, EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion, Mol. Microbiol, vol.103, pp.26-38, 2017.

J. Madacki, F. Laval, A. Grzegorzewicz, A. Lemassu, M. Záhorszká et al., Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria, J. Biol. Chem, vol.293, pp.5172-5184, 2018.

G. G. Mahairas, P. J. Sabo, M. J. Hickey, D. C. Singh, and C. K. Stover, Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis, J. Bacteriol, vol.178, pp.1274-1282, 1996.

L. Majlessi, R. Prados-rosales, A. Casadevall, and R. Brosch, Release of mycobacterial antigens, Immunol. Rev, vol.264, pp.25-45, 2015.

K. M. Malone, K. Rue-albrecht, D. A. Magee, K. Conlon, O. T. Schubert et al., Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli, 2018.

O. Marjanovic, T. Miyata, A. Goodridge, L. V. Kendall, and L. W. Riley, Mce2 operon mutant strain of Mycobacterium tuberculosis is attenuated in C57BL/6 mice, Tuberculosis, vol.90, pp.50-56, 2010.

C. Maueröder, R. A. Chaurio, T. Dumych, M. Podolska, M. D. Lootsik et al., A blast without power-cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses, Cell Death Differ, vol.23, pp.1016-1025, 2016.

K. A. Mcdonough, Y. Kress, and B. R. Bloom, Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages, Infect. Immun, vol.61, pp.2763-2773, 1993.

A. Mehra, A. Zahra, V. Thompson, N. Sirisaengtaksin, A. Wells et al., Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking, PLoS Pathog, vol.9, 2013.

I. Mokrousov, E. Shitikov, Y. Skiba, S. Kolchenko, E. Chernyaeva et al., Emerging peak on the phylogeographic landscape of Mycobacterium tuberculosis in West Asia: Definitely smoke, likely fire, Mol. Phylogenet. Evol, vol.116, pp.202-212, 2017.

J. Madacki, Infection, Genetics and Evolution

E. V. Nazarova, C. R. Montague, T. La, K. M. Wilburn, N. Sukumar et al., Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis, vol.6, 2017.

B. P. Ndiaye, F. Thienemann, M. Ota, B. S. Landry, M. Camara et al., Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial, Lancet. Respir. Med, vol.3, pp.37-42, 2015.

M. Newton-foot, R. M. Warren, S. L. Sampson, P. D. Van-helden, and N. C. Gey-van-pittius, The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems, BMC Evol. Biol, vol.16, 2016.

M. Orgeur and R. Brosch, Evolution of virulence in the Mycobacterium tuberculosis complex, Curr. Opin. Microbiol, pp.68-75, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046172

I. D. Otchere, M. Coscolla, L. Sanchez-buso, A. Asante-poku, D. Brites et al., Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches, 2018.

A. K. Pandey and C. M. Sassetti, Mycobacterial persistence requires the utilization of host cholesterol, Proc. Natl. Acad. Sci. 105, pp.4376-4380, 2008.

C. Passemar, A. Arbués, W. Malaga, I. Mercier, F. Moreau et al., Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions, Cell. Microbiol, vol.16, pp.195-213, 2014.

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, 2008.
DOI : 10.1371/journal.ppat.1000204

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1000204&type=printable

C. Portal-celhay, J. M. Tufariello, S. Srivastava, A. Zahra, T. Klevorn et al., Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4 + T-cell activation, Nat. Microbiol, vol.2, p.16232, 2017.
DOI : 10.1038/nmicrobiol.2016.232

URL : http://europepmc.org/articles/pmc5453184?pdf=render

D. Portevin, C. De-sousa-d'auria, H. Montrozier, C. Houssin, A. Stella et al., The acyl-AMP ligase FadD32 and AccD4containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth identification of the carboxylation product and determination of the acyl-CoA carboxylase components, J. Biol. Chem, vol.280, pp.8862-8874, 2005.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, and S. T. Cole, Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol. Microbiol, vol.46, pp.709-717, 2002.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nat. Med, vol.9, pp.533-539, 2003.
DOI : 10.1038/nm859

C. J. Queval, O. Song, J. Carralot, J. Saliou, A. Bongiovanni et al., Mycobacterium tuberculosis controls phagosomal acidification by targeting CISHmediated signaling, Cell Rep, vol.20, pp.3188-3198, 2017.
DOI : 10.1016/j.celrep.2017.08.101

URL : https://hal.archives-ouvertes.fr/pasteur-02046436

J. Quigley, V. K. Hughitt, C. A. Velikovsky, R. A. Mariuzza, N. M. El-sayed et al., The Cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis, vol.8, pp.148-165, 2017.

L. Ramakrishnan, N. A. Federspiel, and S. Falkow, Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family, Science, vol.288, pp.1436-1439, 2000.

M. B. Reed, P. Domenech, C. Manca, H. Su, A. K. Barczak et al., Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proc. Natl. Acad. Sci. 102, vol.431, pp.8327-8332, 2004.

B. Rieck, G. Degiacomi, M. Zimmermann, A. Cascioferro, F. Boldrin et al., PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis, PLoS Pathog, vol.13, 2017.
DOI : 10.1371/journal.ppat.1006399

URL : https://hal.archives-ouvertes.fr/pasteur-01570229

C. Rousseau, O. Neyrolles, Y. Bordat, S. Giroux, T. D. Sirakova et al., Deficiency in mycolipenate-and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells, Cell. Microbiol, vol.5, pp.405-415, 2003.

C. Rousseau, O. C. Turner, E. Rush, Y. Bordat, T. D. Sirakova et al., Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs, Infect. Immun, vol.71, pp.4684-4690, 2003.

S. Samanta, A. Singh, P. Biswas, A. Bhatt, and S. S. Visweswariah, Mycobacterial phenolic glycolipid synthesis is regulated by cAMP-dependent lysine acylation of FadD22, Microbiology, vol.163, pp.373-382, 2017.

C. M. Sassetti and E. J. Rubin, Genetic requirements for mycobacterial survival during infection, Proc. Natl. Acad. Sci. 100, pp.12989-12994, 2003.
DOI : 10.1073/pnas.2134250100

URL : http://www.pnas.org/content/100/22/12989.full.pdf

F. Sayes, L. Sun, M. Di-luca, R. Simeone, N. Degaiffier et al., strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion-encoded PE-PPE proteins predicts vaccine potential, Cell Host Microbe, vol.11, pp.352-363, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01104794

F. Sayes, A. Pawlik, W. Frigui, M. I. Gröschel, S. Crommelynck et al., CD4+ T cells recognizing PE/PPE antigens directly or via cross reactivity are protective against pulmonary Mycobacterium tuberculosis infection, PLoS Pathog, vol.12, 2016.
DOI : 10.1371/journal.ppat.1005770

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005770&type=printable

F. Sayes, C. Blanc, L. S. Ates, N. Deboosere, M. Orgeur et al., Multiplexed quantitation of intraphagocyte Mycobacterium tuberculosis secreted protein effectors, Cell Rep, vol.23, pp.1072-1084, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046037

R. H. Senaratne, B. Sidders, P. Sequeira, G. Saunders, K. Dunphy et al., Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice, J. Med. Microbiol, vol.57, pp.164-170, 2008.
DOI : 10.1099/jmm.0.47454-0

URL : http://jmm.microbiologyresearch.org/deliver/fulltext/jmm/57/2/164.pdf?itemId=/content/journal/jmm/10.1099/jmm.0.47454-0&mimeType=pdf&isFastTrackArticle=

A. Serafini, F. Boldrin, G. Palù, and R. Manganelli, Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: Essentiality and rescue by iron and zinc, J. Bacteriol, vol.191, pp.6340-6344, 2009.

N. Shimono, L. Morici, N. Casali, S. Cantrell, B. Sidders et al., Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon, Proc. Natl. Acad. Sci, vol.100, pp.15918-15923, 2003.

M. O. Shleeva, T. K. Kondratieva, G. R. Demina, E. I. Rubakova, A. V. Goncharenko et al., overexpression of adenylyl cyclase encoded by the Mycobacterium tuberculosis Rv2212 gene confers improved fitness, accelerated recovery from dormancy and enhanced virulence in mice, Front. Cell. Infect. Microbiol, 2017.

M. S. Siegrist, M. Steigedal, R. Ahmad, A. Mehra, M. S. Dragset et al., Mycobacterial Esx-3 requires multiple components for iron acquisition, 2014.
DOI : 10.1128/mbio.01073-14

URL : https://mbio.asm.org/content/mbio/5/3/e01073-14.full.pdf

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, L. Majlessi et al., Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

R. Simeone, F. Sayes, O. Song, M. I. Gröschel, P. Brodin et al., Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo, PLoS Pathog, vol.11, 2015.

K. H. Singh, B. Jha, A. Dwivedy, E. Choudhary, N. et al., Characterization of a secretory hydrolase from Mycobacterium tuberculosis sheds critical insight into host lipid utilization by M. tuberculosis, J. Biol. Chem, vol.292, pp.11326-11335, 2017.

D. Sinsimer, G. Huet, C. Manca, L. Tsenova, M. Koo et al., The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence, Infect. Immun, vol.76, pp.3027-3036, 2008.

N. Slama, S. Jamet, W. Frigui, A. Pawlik, D. Bottai et al., The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis, Mol. Microbiol, vol.99, pp.794-807, 2016.

N. H. Smith, R. G. Hewinson, K. Kremer, R. Brosch, and S. V. Gordon, Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis, Nat. Rev. Microbiol, vol.7, pp.537-544, 2009.

L. J. Smith, A. Bochkareva, M. D. Rolfe, D. M. Hunt, C. Kahramanoglou et al., Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence, Nucleic Acids Res, vol.45, pp.6600-6612, 2017.

L. Solans, J. Gonzalo-asensio, C. Sala, A. Benjak, S. Uplekar et al., The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis, PLoS Pathog, vol.10, 2014.

A. L. Sørensen, S. Nagai, G. Houen, P. Andersen, and A. B. Andersen, Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis, Infect. Immun, vol.63, pp.1710-1717, 1995.

F. Spertini, R. Audran, R. Chakour, O. Karoui, V. Steiner-monard et al., Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial, Lancet Respir. Med, vol.3, pp.953-962, 2015.

J. Madacki, Genetics and Evolution, p.435, 1015.

T. P. Stinear, T. Seemann, P. F. Harrison, G. A. Jenkin, J. K. Davies et al., Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Res, vol.18, pp.729-741, 2008.

J. Sun, A. Siroy, R. K. Lokareddy, A. Speer, K. S. Doornbos et al., The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD, Nat. Struct. Mol. Biol, vol.22, pp.672-678, 2015.
DOI : 10.1038/nsmb.3064

URL : http://europepmc.org/articles/pmc4560639?pdf=render

P. Supply, M. Marceau, S. Mangenot, D. Roche, C. Rouanet et al., Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis, Nat. Genet, vol.45, pp.172-179, 2013.

A. Treumann, F. Xidong, L. Mcdonnell, P. J. Derrick, A. E. Ashcroft et al., 5-methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis, J. Mol. Biol, vol.316, pp.89-100, 2002.

J. M. Tufariello, J. R. Chapman, C. A. Kerantzas, K. Wong, C. Vilchèze et al., Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence, Proc. Natl. Acad. Sci, 2016.

N. Van-der-wel, D. Hava, D. Houben, D. Fluitsma, M. Van-zon et al., M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, pp.1287-1298, 2007.

B. C. Vanderven, R. J. Fahey, W. Lee, Y. Liu, R. B. Abramovitch et al., novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment, PLoS Pathog, vol.11, 2015.

I. Vergne, M. Gilleron, and J. Nigou, Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan, Front. Cell. Infect. Microbiol, vol.4, 2015.

R. Veyron-churlet, S. Bigot, O. Guerrini, S. Verdoux, W. Malaga et al., the biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions, J. Mol. Biol, vol.353, pp.847-858, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01883772

L. E. Via, D. Deretic, R. J. Ulmer, N. S. Hibler, L. A. Huber et al., Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7, J. Biol. Chem, vol.272, pp.13326-13331, 1997.

C. Vilchèze, H. R. Morbidoni, T. R. Weisbrod, H. Iwamoto, M. Kuo et al., Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis, J. Bacteriol, vol.182, pp.4059-4067, 2000.

A. Viljoen, V. Dubois, F. Girard-misguich, M. Blaise, J. Herrmann et al., The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments, Mol. Microbiol, vol.104, pp.889-904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02137585

B. Villarreal-ramos, S. Berg, A. Whelan, S. Holbert, F. Carreras et al., Experimental infection of cattle with Mycobacterium tuberculosis isolates shows the attenuation of the human tubercle bacillus for cattle, Sci. Rep, vol.8, 2018.

M. I. Voskuil, I. L. Bartek, K. Visconti, and G. K. Schoolnik, The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species, Front. Microbiol, vol.2, 2011.

J. Wang, B. Li, P. Ge, J. Li, Q. Wang et al., Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system, Nat. Immunol, vol.16, pp.237-245, 2015.

J. Wang, F. Mcintosh, N. Radomski, K. Dewar, R. Simeone et al., Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii, Genome Biol Evol, vol.7, pp.856-870, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01352692

R. Wassermann, M. F. Gulen, C. Sala, S. G. Perin, Y. Lou et al., Mycobacterium tuberculosis differentially activates cGAS-and inflammasome-dependent intracellular immune responses through ESX-1, Cell Host Microbe, vol.17, pp.799-810, 2015.
DOI : 10.1016/j.chom.2015.05.003

URL : https://doi.org/10.1016/j.chom.2015.05.003

R. O. Watson, S. L. Bell, D. A. Macduff, J. M. Kimmey, E. J. Diner et al., The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy, Cell Host Microbe, vol.17, pp.811-819, 2015.

E. M. Weerdenburg, A. M. Abdallah, M. Suman, K. De-punder, N. Van-der-wel et al., ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish, Cell. Microbiol, vol.14, pp.728-739, 2012.

, World Health Organization, 2017.

K. E. Wiens and J. D. Ernst, the mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent, PLoS Pathog, vol.12, 2016.

H. G. Wiker and M. Harboe, The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis, Microbiol. Rev, vol.56, pp.648-661, 1992.

M. Williams, V. Mizrahi, and B. D. Kana, Molybdenum cofactor: A key component of Mycobacterium tuberculosis pathogenesis?, Crit. Rev. Microbiol, vol.40, pp.18-29, 2014.

D. Wong, H. Bach, J. Sun, Z. Hmama, and Y. Av-gay, Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification, Proc. Natl. Acad. Sci, vol.108, pp.19371-19376, 2011.
DOI : 10.1073/pnas.1109201108

URL : http://www.pnas.org/content/108/48/19371.full.pdf

Y. J. Zhang, M. C. Reddy, T. R. Ioerger, A. C. Rothchild, V. Dartois et al., Tryptophan biosynthesis protects mycobacteria from CD4 T-cellmediated killing, Cell, vol.155, pp.1296-1308, 2013.
DOI : 10.1016/j.cell.2013.10.045

URL : https://doi.org/10.1016/j.cell.2013.10.045

K. E. Zulauf, J. T. Sullivan, and M. Braunstein, The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation, PLoS Pathog, vol.14, 2018.

J. Madacki, Genetics and Evolution