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Abstract

Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is

widely used, it does not efficiently protect against pulmonary tuberculosis and an improved

tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses differ-

ent ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and

host immune responses. We recently reported that secretion of T7S substrates belonging to

the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (poly-

morphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies

required both a functional ESX-5 system and a functional PPE38/71 protein for secretion.

Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were

linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total

of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted

strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secre-

tion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and

could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope map-

ping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in

splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of

PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of

PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic pre-

sentation or activation of innate immune cells, nor protective efficacy in two different mouse

vaccination-infection models. This unexpected finding stimulates a reassessment of the

immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are con-

tained in vaccine formulations currently in clinical evaluation.
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Author summary

One of the major findings of the pioneering Mycobacterium tuberculosis H37Rv genome

sequencing project was the identification of the highly abundant PE and PPE proteins,

named after their N-terminal motifs Pro–Glu (PE) or Pro–Pro–Glu (PPE). Within the 20

years of research since then, many claims were made that PE/PPE proteins, including the

two large subgroups encoded by repetitive sequences with very high GC content

(PE_PGRS and PPE-MPTR families), are exported to the bacterial surface or beyond, and

show broad immunomodulatory impact on host-pathogen interaction. We thus screened

strains from different branches of the M. tuberculosis complex, including the attenuated

Mycobacterium bovis BCG vaccine strains, for their capacity to export PE_PGRS/PPE-

MPTR proteins. Strikingly, we found that BCG strains were unable to export the plethora

of PE_PGRS/PPE-MPTR proteins due to the absence of the region of difference RD5,

which in M. tuberculosis encodes PPE38, required for PE_PGRS/PPE-MPTR export. Sur-

prisingly, the restoration of PE_PGRS/PPE-MPTR export by genetic complementation in

recombinant BCG did not result in immunomodulatory changes or altered protection in

mouse models. Our results thus put into perspective the numerous reports on virulence-

associated immunomodulatory impact of individual PE_PGRS and PPE-MPTR proteins

and open novel questions on their biological function(s).

Introduction

Tuberculosis is the deadliest infectious disease worldwide and is responsible for more than 1.7

million deaths per year [1]. Its causative agent, Mycobacterium tuberculosis, is a slow growing

bacterium inherently resistant to many antibiotics. This problem is further exacerbated by ris-

ing levels of acquired drug resistance, resulting in multi-drug-resistant (MDR) and exten-

sively-drug-resistant (XDR) strains of M. tuberculosis, which require treatment regimens of

two years with low treatment success rates and severe side effects [1–3]. These worrying devel-

opments highlight the need for a successful vaccine, halting the transmission of tuberculosis

[4]. The currently used vaccine is based on Mycobacterium bovis, attenuated through serial cul-

ture by Calmette and Guérin and therefore known as Bacille Calmette-Guérin (BCG) [5–7].

BCG is generally believed to protect relatively well against severe forms of disseminated tuber-

culosis in children, but is unable to induce full protection or halt transmission of M. tuberculo-
sis in adolescents and adults [4,8,9]. Furthermore, even these protective traits are subject to

controversy, which may be caused by the plethora of genomic mutations and recombination

events that have accrued during the worldwide sub-culturing of the original BCG strain

[5,6,10,11].

One possible reason for sub-optimal protection by BCG and other candidate vaccines is the

absence or secretion defect of certain immunogenic proteins. M. tuberculosis secretes many

proteins through its different secretion systems, including Sec-translocation (Sec), Twin-argi-

nine-translocation (Tat), or Type VII secretion (T7S) systems [12,13]. M. tuberculosis possesses

five different T7S systems called ESX-1 to ESX-5 [14]. The first T7S system to be discovered

was ESX-1, identified by the Region of Difference (RD)1 deletion in BCG [15], responsible for

the loss of ESX-1-mediated secretion in this vaccine strain [16,17]. Substrates of the ESX-1 sys-

tem are responsible for the rupture of mycobacterium-containing phagosomes and represent a

major virulence factor of pathogenic mycobacteria [18–21]. Corresponding to this informa-

tion, the expression of the ESX-1 secretion system in BCG increased protective activity, but

BCG vaccine is deficient in PE_PGRS/PPE-MPTR secretion
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was also associated with increased pathogenesis [22]. Interestingly, a recently developed

recombinant BCG strain expressing ESX-1 of Mycobacterium marinum was able to induce

cytosolic pattern recognition and better protective responses, without a significant increase in

virulence [23]. Similarly, the vaccine candidate MTBVAC was recently shown to induce

immune responses to selected ESX-1 substrates and this ability was found to be the major

determinant of improved protective efficacy as compared to BCG [24].

While the ESX-1 system is the best studied T7S system in mycobacteria, the ESX-5 system

has the largest repertoire of substrates [25–27]. The ESX-5 system is essential for slow-growing

mycobacteria, because of its role in outer membrane permeability [26,28]. Therefore, this

system is present and considered functional in BCG. The coding sequences of the potential

substrates of the ESX-5 system together form almost 8% of the coding potential of the

M. tuberculosis genome [29]. Most notable amongst the ESX-5 substrates are the PE and PPE

proteins, named for the proline and glutamic acid residues in their N-terminal domains.

Defined functions have been described for some PE-PPE proteins, such as the lipase LipY

[30,31] and PPE10, the latter of which is important for capsular integrity of M. marinum [32].

Furthermore, many studies have ascribed immunomodulatory functions to PE-PPE proteins,

such as altering host cytokine responses by interaction with Toll-like receptors or inhibition

of antigenic presentation [33–36]. However, most PE and PPE proteins have no known func-

tions and their high degree of homology makes them difficult to study. The latter is especially

true for the two most-recently evolved subgroups of ESX-5 substrates, i.e. the PE_PGRS

and PPE-MPTR proteins. Both these sub-groups are characterized by their GC-rich DNA

sequences, repetitive glycine-rich amino acid motifs and high molecular weight ranging up to

~365 kDa [27,29].

We recently identified the PPE protein PPE38 and its highly similar, duplicated variant

PPE71, as essential factors in the secretion of both the PE_PGRS and PPE-MPTR proteins, in

both M. marinum and M. tuberculosis [37]. The genes encoding PPE38 and PPE71 are orga-

nized in a 4-gene locus that also includes the esxX and esxY genes (Fig 1A), which however are

not required for PE_PGRS secretion in M. tuberculosis strain CDC1551 [37]. Strains with natu-

rally occurring, or engineered, loss-of-function mutations of the ppe38-locus were unable to

secrete both PE_PGRS and PPE-MPTR proteins and were more virulent in a mouse infection

model [37]. Indeed, deletion of the ppe38-locus occurred at the branching point of modern

Beijing (Lineage 2) strains and may have aided in their global dispersal [37]. Moreover, the

ppe38-locus was previously shown to be a hypervariable genetic region and many strains

within the M. tuberculosis complex (MTBC) have polymorphisms in this locus [38]. Such poly-

morphisms are often caused by recombination events involving IS6110 elements [38,39].

Insertion, homologous recombination, deletion of IS6110 copies and/or deletion of interven-

ing sequences between two IS6110 elements can lead to overexpression or gene deletion/trun-

cation events with possible effects on transmission or virulence [37,40–43]. The most well-

known of the polymorphisms affecting the ppe38-locus is the deletion of the RD5 region from

BCG and several other animal-adapted strains of the MTBC [38,44]. The biological impact of

the RD5 deletion has been a controversial subject of research and has focused solely on the

phospholipase C encoding genes plcABC. Deletion of plcABC was reported to either attenuate

[45] or increase virulence of M. tuberculosis [46]. However, a more recent study of the plc-
genes in different mouse and cellular models showed no relevant contribution of these genes

to the virulence of M. tuberculosis [47].

Here, we investigated the effect of RD5-like polymorphisms of the ppe38-locus in a number

of MTBC-branches and discovered that the RD5 deletions in animal-adapted strains and the

BCG vaccine strains have profound effects on the repertoire of secreted substrates in these

strains. Restoration of PPE38-dependent secretion results in a wider antigenic repertoire of

BCG vaccine is deficient in PE_PGRS/PPE-MPTR secretion
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BCG, whereby the identification of two immunogenic epitopes in one of the substrates, i.e. the

PPE-MPTR protein PPE10, has allowed us to monitor the immunological impact of the corre-

sponding secretion characteristics on host immune responses.

Fig 1. RD5-like genetic deletions in the M. tuberculosis complex and their effect on PE_PGRS secretion. A) The genetic organization

of the RD5 locus in M. tuberculosis strains CDC1551 and H37Rv is depicted in colored arrows. Bars below the genes indicate the size and

location of different RD5-like and ppe38-deletions examined in this work. Arrows above the genes indicate primers used in this study to

verify the presence of RD5 associated genes, sequences can be found in S4 Table. Functional PE_PGRS secretion is indicated by shading of

the strain name in green, while red shading represents strains in which PE_PGRS secretion is not functional (based on immunoblot

analysis). Figure adapted from Mc Evoy et al. 2009 with permission [38]. B) Immunoblot secretion analysis of animal-adapted MTBC

strains verifies that strains with RD5 deletions do not secrete PE_PGRS proteins. Samples were prepared as described in materials and

methods section. C) Immunoblot secretion analysis reveals PE_PGRS secretion defect in BCG, comparable to the M. tuberculosis ppe38-
71-deletion strain or a general ESX-5 secretion mutant (eccC5::tn). SigA was used as a loading and lysis control. Some lysis could be found

in both BCG and BCG38, but was not markedly different between strains. Please note that these immunoblots correspond to the same pre-

cultures as those that were used in the immunogenicity experiment depicted in Fig 5 and therefore also include the Δppe10 and

Δppe25-pe19 isolates. Full western blots corresponding to panels depicted in B-C are depicted in S5 Fig and S7 Fig, respectively.

https://doi.org/10.1371/journal.ppat.1007139.g001
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Results

Variation in PE_PGRS secretion in MTBC lineages and outgroups reveal

genome sequence assembly problems

The genetically most-distant tubercle bacilli are represented by the Mycobacterium canettii
clade. This outgroup mirrors the genomic diversity likely present within the ancestor of M.

tuberculosis before branching and clonal expansion of the MTBC [48]. Recent studies of M.

canettii have improved our understanding of adaptations that have shaped the transition from

an M. canettii-like ancestor into extant M. tuberculosis, such as the gain of surface hydropho-

bicity through loss of lipooligosaccharide production [49] and the apparent loss of the capacity

to exchange chromosomal DNA in the MTBC [50]. Interestingly, the available genome

sequence information of five M. canettii isolates revealed potential polymorphisms in the

ppe38-locus [48]. While strains D, K and L all possessed copies of the ppe38 and ppe71 genes,

the sequence of strain J in the database indicated the potential absence of ppe38 and ppe71
from the strain. Such a deletion would be expected to affect PE_PGRS secretion [37]. However,

secretion analysis revealed that all 5 isolates secreted PE_PGRS proteins (S1A Fig). Subsequent

PCR analysis confirmed the presence of a complete ppe38-71 locus, similar to M. tuberculosis
H37Rv, for all tested M. canettii strains, including strain J (S1B Fig). It is likely that the

sequence polymorphisms in the previously deposited dataset may have arisen due to auto-

mated sequence assembly-associated bio-informatic artefact, which is a known problem for

this region [37,38].

Another interesting group of strains, which were reported to have major polymorphisms in

the RD5/ppe38-locus, was recently described by Lee et al. [51]. The Inuit population of the

Nunavik region in Canada is affected by high levels of tuberculosis incidence. The majority of

all cases in this cohort were shown to have resulted from the introduction of a single, particular

M. tuberculosis strain, about one century ago. This sublineage was defined by genomic dele-

tions, two of which affect the RD5/ppe38 locus. A 5,759 bp RD5-like deletion (CDC1551-D17)

removed the three phospholipase C genes plcABC and truncated ppe38 (Fig 1A). The other ppe
gene in this locus, ppe71 (mt2422), was reported to be affected by 22 bp frameshift deletion

(Fig 1A)[51]. Reinvestigation of the sequence of ppe71 by inspection of the whole genome

sequence data, and by PCR and Sanger sequence analysis revealed that this deletion was in fact

a 21 bp deletion causing a 7 amino-acid deletion (Amino acids 354-MGGAGAG-361) relative

to PPE71 of M. tuberculosis H37Rv, but not a frameshift. This deletion has been previously

described to occur also in other strains of M. tuberculosis, including CDC1551 (MT2422 -

http://www.genome.jp/dbget-bin/www_bget?mtc:MT2422) [38]. To test whether the RD5-like

polymorphism negatively affects PE_PGRS secretion, five strains with and one strain without

this deletion were subjected to secretion analysis by immunoblotting. All strains exhibited sim-

ilar secretion levels of both PE_PGRS proteins and the ESX-1 substrate EsxA, as compared to

reference strain CDC1551 (S1B Fig). These data show that the PPE71 variant carrying the

MGGAGAG-deletion is able to sustain PE_PGRS secretion levels in M. tuberculosis, indepen-

dently of truncation of PPE38. Furthermore, there is no apparent phenotypic difference when

M. tuberculosis has one or two functional copies of PPE38/71.

RD5 deletions in animal-adapted strains and in M. bovis BCG block

PE_PGRS secretion

A striking amount of different RD5-like polymorphisms are present in the animal-adapted lin-

eages/ecotypes of M. tuberculosis complex. These strains share their most recent common

ancestor with M. africanum Lineage 6 [52,53], which is reported to have two copies of ppe38/

BCG vaccine is deficient in PE_PGRS/PPE-MPTR secretion
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ppe71 [54]. Mycobacterium pinnipedi, a pathogen for seals and sea lions, has one intact copy of

the ppe38 gene, but no esxXY-genes (Fig 1A). M. bovis and Mycobacterium caprae share an iden-

tical RD5 deletion, while Mycobacterium orygis possesses a unique RD5 deletion (Fig 1A)

[38,55,56]. To investigate the effect of RD5 deletions on PE_PGRS secretion in animal-adapted

strains, we performed secretion analysis of M. bovis, M. caprae, M. orygis and M. pinnipedi (Fig

1B). As expected, M. pinnipedi was the only tested species able to secrete PE_PGRS proteins in

concordance with the presence of one functional copy of ppe38 (Fig 1B). In contrast, M. bovis,
M. caprae and M. orygiswere deficient in PE_PGRS secretion, while EsxA secretion was not

affected and no marked cell lysis occurred (Fig 1B). Intracellular PE_PGRS expression was

detected in strains with a secretion defect and was strikingly different between isolates (Fig 1B).

Since M. bovis and M. caprae share the same RD5 deletion with M. bovis BCG, we hypothe-

sized that this vaccine strain is also deficient in PE_PGRS secretion (Fig 1A). Indeed, BCG did

not secrete PE_PGRS proteins comparable to M. tuberculosis-Δppe38-71 and the ESX-5 defi-

cient strain eccC5::tn (Fig 1C) [37,57]. This PE_PGRS secretion defect was at least partially

restored in the recombinant BCG strain complemented with the M. tuberculosis ppe38-71-

locus, which we have called BCG38. As expected, BCG and BCG38 were deficient in secretion

of the ESX-1 substrate EsxA (ESAT-6) and exhibited only low levels of PPE41 and EsxN. The

increase of PPE41 secretion in BCG38 compared to the parental strains (Fig 1C) was consistent

in this experiment and other replicates (S1C and S1D Fig). Furthermore, five different M.

bovis BCG isolates, which were selected for their relative genetic distance [6,10], were all defi-

cient in PE_PGRS secretion (S1D Fig), emphasizing that all BCG strains are likely unable to

secrete PE_PGRS proteins. It is of interest to note that M. bovis BCG Tice secretes higher levels

of the ESX-5 substrates PPE41 and EsxN (S1D Fig), likely because of its genetic duplication of

the esx-5 genetic locus [10]. However, despite this ESX-5 duplication, BCG Tice is unable to

secrete PE_PGRS proteins. The PE_PGRS secretion defect of BCG was not restored in a previ-

ously constructed BCG strain with a cosmid containing the complete RD5 region of M. tuber-
culosis H37Rv (S1C Fig) [16]. In contrast, introduction of the ppe38-71 locus from M.

tuberculosis on an integrative plasmid constitutively expressing these genes under control of

the hsp60 promoter [37], partially restored PE_PGRS secretion of recombinant M. bovis BCG

(Fig 1C, S1C and S1D Fig). This finding was especially surprising since emergence of RD5-de-

leted M. bovis/M. caprae progenitor strains likely dates back thousands of years [52].

Taken together, our data show that the different BCG vaccines are all deficient for the secre-

tion of PE_PGRS proteins and that this is at least partially revertible by complementation with

the ppe38-71 locus of M. tuberculosis. Based on our previous work, this secretion defect is

expected to affect up to 89 proteins classified as PE_PGRS or PPE-MPTR [27,37].

Secretion of PE_PGRS/PPE-MPTR proteins in M. tuberculosis or BCG does

not alter phenotypic and functional maturation of host innate immune

cells, or antigenic presentation

The ability to restore PPE38-dependent secretion in M. bovis BCG allowed us to investigate to

what extent this secretion defect affects properties of the BCG vaccine. Many of the 89 mem-

bers of the PE_PGRS and PPE-MPTR proteins have been suggested to perform biological roles

in virulence and immune modulation, although the molecular mechanisms and biological rel-

evance remain unestablished for most of these [14,27,33,34]. Increasing the repertoire of

immunogenic proteins secreted by BCG could lead to increased protection, since protein

secretion by mycobacteria is essential for the efficient induction of protective CD4+ T-cell

responses [22,58–61]. However, restoring secretion of proteins that have been proposed to

exhibit immunomodulatory functions could also decrease efficacy of the vaccine strain. In

BCG vaccine is deficient in PE_PGRS/PPE-MPTR secretion
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particular, recent reports suggest that PPE38 itself downregulates Major Histocompatibility

Complex class-I (MHC-I) expression in murine macrophages [62] and that PE_PGRS47 inhib-

its autophagy and is responsible for reducing MHC-II-restricted antigen presentation during

in vivo infection of mice [35].

We set out to establish whether presence of PPE38 and the ability to secrete PE_PGRS and

PPE-MPTR proteins, affected phenotypic and functional maturation of infected murine innate

immune cells. Bone marrow-derived dendritic cells (BM-DCs) of C57BL/6 mice were infected

(MOI = 0.5) with isogenic M. tuberculosis [37] or BCG strains, with or without the ppe38-

locus. All the infected BM-DCs exhibited a clear upregulation of co-stimulatory markers

CD40, CD80 and CD86, as well as modulation of MHC-I (H-2Kb) and MHC-II (I-Ab) expres-

sion, compared to uninfected controls. However, no differences in the induction of any such

phenotypic maturation markers could be observed for the different isogenic WT and recombi-

nant strains (Fig 2, S1 Table). Quantification of several inflammatory cytokines in the culture

supernatants of the infected BM-DCs showed highly similar levels of TNFα, IL-12p40/70 and

IL-6 production induced by the isogenic strains of BCG and M. tuberculosis (Fig 2B). These

results indicate that PPE38-dependent secretion defects are unlikely to have a major effect on

the phenotypic or functional maturation of DCs, even though many PE_PGRS and

PPE-MPTR proteins have previously been suggested to perform such biological roles [33,35].

In addition, we assessed whether PPE38-dependent protein secretion influences MHC-II-

restricted presentation of other mycobacterial antigens. Such a phenotype might possibly be

caused by a direct effect on the host phagocytes due to restored PE_PGRS secretion [35,36], or

by competition in the hosts antigen presentation machinery upon secretion of the large num-

ber of PPE38-dependent substrates. To test this hypothesis, BM-DCs were infected with serial

two-fold dilutions of M. tuberculosis or BCG strains with and without the ppe38-locus. IL-2

secretion in culture medium by MHC-II restricted T-cell hybridomas specific to FbpA

(Ag85A101-120 –Fig 2C, upper panel) or EsxH (TB10.474−88 –lower panel) was quantified by

ELISA as a measure of antigen presentation and hybridoma T-cell activation. Higher levels of

IL-2 were detected in response to M. tuberculosis strains compared to BCG strains, but no dif-

ferences were observed between isogenic strains with, or without, functional PPE38-dependent

PE_PGRS/PPE-MPTR secretion. These data show that PPE38-dependent PE_PGRS/

PPE-MPTR secretion does not reduce MHC-II-restricted antigen presentation of other myco-

bacterial antigens by the host DCs.

Together, these results suggest that introduction of PPE38 and restoration of PE_PGRS

secretion do not negatively affect phenotypic and functional maturation of innate immune

cells, or their capacity to present antigen to CD4+ T cells.

Restoration of PPE38-dependent PE_PGRS/PPE-MPTR protein secretion in

BCG does not impact protection potential against M. tuberculosis in mice

Since we found no evidence suggesting that antigen presentation of mycobacterial antigens by

DCs is negatively affected by restoration of PPE38-dependent secretion, we hypothesized that

the enlarged repertoire of secreted proteins in BCG38 could increase its vaccine potential com-

pared to the parental BCG. In parallel, we hypothesized that the capsule of BCG could be

altered upon restoration of PPE38-dependent secretion. We recently reported that transposon

insertions in the gene encoding an ESX-5 associated chaperone (espG5), or in the PPE-MPTR

encoding gene ppe10 (mmar_0761), reduce capsule integrity of M. marinum [32]. Similarly, an

eccC5::tn mutant in the M. tuberculosis strain CDC1551, completely deficient in ESX-5 secre-

tion, also exhibited reduced capsule integrity [32,57]. Since PPE10 is dependent on PPE38 for

its secretion [37], we hypothesized that restoration of PPE10 secretion might positively affect
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capsule integrity. The presence of an intact capsule on BCG, achieved by culturing in deter-

gent-free growth medium, has recently been shown to be important for a more potent immune

response and could therefore be relevant for the protective efficacy of BCG38 [63].

To test both hypotheses, C57BL/6 mice were subcutaneously (s.c.) immunized with 1 mil-

lion CFU of either BCG, or BCG38, cultured either in shaking condition in the presence of

Fig 2. Secretion of PPE38 and PE_PGRS/PPE-MPTR proteins in BCG or M. tuberculosis does not alter phenotypic and functional

maturation, or antigen presentation by innate immune cells. A) BM-DCs (C57BL/6, H-2b) infected with the indicated mycobacterial

strains were stained for surface expression of co-stimulation markers CD40, CD80 and CD86, or MHC components I-Ab and H-2Kb.

Depicted are the cell counts (Y-axis) and fluorescent intensity (X-axis) as quantified by flow cytometric analyses. Quantification of mean

fluorescent intensity and quantification of cell survival can be found in S1B Table) Culture supernatant of the experiment described in A

was assessed for the presence of cytokines IL-12p40/70, IL-6 and TNF-α. No differences were detected between cells infected with the

isogenic BCG or M. tuberculosis isolates. C) Antigenic presentation by infected DCs is not affected by disruption or restoration of PPE38–

dependent protein secretion in M. tuberculosis or BCG. BM-DCs (BALB/c, H-2d) were infected with two-fold dilutions (data points in

graph) of the indicated M. tuberculosis or BCG strains starting at MOI = 10 (indicated by black arrow). IL-2 production was quantified by

ELISA after overnight co-culture with I-Ed-restricted T-cell hybridoma specific for FbpA (Ag85A101-120 (2A1), upper panel) or with I-Ad-

restricted T-cell hybridoma specific for EsxH (TB10.474−88 (1G1), lower panel). Data are representative of biological duplicates.

https://doi.org/10.1371/journal.ppat.1007139.g002
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0.025% Tween-80, or in unperturbed conditions without detergent. Four weeks post-immuni-

zation, mice were challenged by an aerosol infection of M. tuberculosis H37Rv (bacterial load:

680 CFU/lung at Day 1, prepared without detergent). Mice were killed four weeks post infec-

tion, at which time lungs and spleens were harvested and assessed for bacterial burdens by

CFU counting. An approximate 100-fold reduction in bacterial lung burdens was achieved by

all conditions of vaccination irrespective of the presence of detergent, or the BCG vs BCG38

vaccine strains (Fig 3A). This reduction of bacterial lung burden coincided with improved

macroscopic state of the lungs (S2A Fig). Similarly, an approximately 10-fold reduction in

spleen CFUs and reduction in splenomegaly was detected in the vaccinated mice irrespective

of the method of vaccine preparation (Fig 3A, S2B Fig). No significant (p<0.05) differences in

bacterial burdens were observed between any of the four tested conditions in either the spleens

or lungs. Together, these results show that restoration of PPE38-dependent PE_PGRS/

PPE-MPTR secretion in BCG does not significantly improve protection against M. tuberculosis
in the murine model used. Moreover, we did not find a significant difference in protective effi-

cacy between conventional and detergent-free preparation of either BCG or BCG38, suggest-

ing that capsular integrity is not altered or does not affect protection in this model.

Identification of immunogenic T-cell epitopes of the PPE-MPTR protein

PPE10

Secretion of T7S-mediated mycobacterial proteins is essential to induce host CD4+ T-cell

responses and the great majority of immunogenic and protective antigens of M. tuberculosis
are secreted proteins [64]. Many of the known immunodominant antigens are PE and PPE

proteins and these form an integral part in a number of subunit or recombinant vaccines

[58,65–68]. Therefore, the finding that restoration of PPE38-dependent PE_PGRS/PPE-MPTR

secretion in BCG did not significantly affect protective efficacy was surprising, particularly as

Fig 3. Restoring PPE38-dependent protein secretion of BCG does not increase protection against M. tuberculosis in C57BL/6 mice. Lung (A) or spleen (B)

bacterial burdens of C57BL/6 mice infected with M. tuberculosis H37Rv via aerosol administration. Mice were vaccinated s.c. four weeks before the challenge,

with 1 x 106 CFU/mouse of either BCG or BCG38 (indicated in green). Both strains were prepared, either in standard culture conditions in medium containing

0.025% Tween-80 considered as no capsule (indicated with (-)), or in culture allowing capsule formation/retention in detergent free condition (indicated with

(+)). Photographs of the assessed organs are depicted in S2A and S2B Fig. Each data point represents the CFU/organ of one single mouse counted and averaged

from two technical duplicates. Error bars depict the standard deviation. Differences between different vaccination conditions were non-significant (p>0.05),

but all vaccination conditions were statistically different from the unimmunized control group (p<0.01). For simplicity, this latter information is not depicted

in the figure. Significance was calculated with Prism software using ordinary one-way ANOVA followed by Tukey’s test for multiple comparisons.

https://doi.org/10.1371/journal.ppat.1007139.g003
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up to 89 individual proteins are predicted to be concerned. In order to explain these unex-

pected data, we reflected on our hypotheses and found additional variables that could affect

the assumptions on which they are based. In particular, while PPE-MPTR secretion was

shown to be strictly dependent on PPE38 in both M. marinum and M. tuberculosis, we had no

direct evidence of PPE-MPTR secretion in BCG38. In contrast to PPE-MPTR proteins,

PE_PGRS proteins may not contain immunodominant epitopes or be protective antigens [69–

72]. Furthermore, although previous studies have found a strict correlation between in vitro
secretion and the capability to induce CD4+ T-cell responses [23,58,68], it is conceivable that

the PPE38-dependant substrates are still membrane, or surface, associated in ppe38-71-defi-

cient strains and thereby remain able to induce T-cell responses.

Since tools to study PPE-MPTR proteins are scarce and currently insufficient to answer the

questions above, we set out to develop an immunological approach to study PPE-MPTR secre-

tion and their immunogenicity in more detail. We selected PPE10 as a model MPTR-protein,

because PPE10 is predicted to be the most ancestral MPTR protein in mycobacteria [27]. The

PPE domain covers the N-terminal 181 residues of PPE10 and is highly similar to other PPE

proteins. The middle of the protein contains a typical MPTR repeat domain, which is very sim-

ilar to other MPTR proteins. The C-terminus contains a domain unique to PPE10, which is

secreted in vitro [25,32,37]. PPE10 is also of biological interest, since it is detected in vivo in

guinea pig lungs and this protein is required for capsular integrity of M. marinum [32,73]. We

set out to assess whether PPE10 has the potential to induce CD4+ T-cell mediated immune

responses in mice. To increase the likelihood of identifying immunogenic epitopes, we immu-

nized not only C57BL/6 mice, but also C57BL/6 x CBA (H-2b/k) F1 mice, which express a

more diverse repertoire of MHC restricting elements (S2 Table). Mice were s.c. immunized

with wild-type M. tuberculosis H37Rv and were killed three weeks later. Splenocytes were iso-

lated and stimulated in vitro with a peptide library consisting of sixty 15-mers with a 5-amino

acid shifting frame spanning PPE10181-487 of M. tuberculosis H37Rv [29,74]. None of the sixty

peptides were able to induce specific T-cell mediated IFN-γ responses by splenocytes from

unimmunized mice or immunized C57BL/6 mice (S3 Fig). However, two peptides were immu-

nogenic in the C57BL/6 x CBA (H-2b/k) F1 mice and induced high levels of IFN-γ, similar to

the positive control peptide ESAT-61−20 (Fig 4, S3 Fig). Interestingly, one of these immuno-

genic peptides (PPE10221-235: GSGNTGSGNLGLGNL) was situated in the MPTR domain of

PPE10, while the other (PPE10381-395: NVLNSGLTNTPVAAP) was derived from the PPE10-

specific C-terminal domain. The MPTR peptide PPE10221-235 has 17 close homologues within

the M. tuberculosis genome (identity > 65%, but no 100% homologues), while this was not the

case for PPE10381-395 (S3 Table). These results show that immunization with M. tuberculosis
induces immune responses against PPE10 and that this response can be elicited both against

the PPE10-specific C-terminal domain or the MPTR domain.

Deletion of ppe10 does not significantly alter protein secretion of other

Type VII secretion substrates in M. tuberculosis
The newly identified immunogenic peptides derived from PPE10 are a tool that allowed us to

answer different questions regarding the PPE-MPTR proteins. First, to determine the specific-

ity and cross-reactivity of the epitopes, we constructed a deletion mutant of ppe10 (Rv0442c) in

the M. tuberculosis CDC1551 background by homologous recombination and phage transduc-

tion (S4 Fig) [75]. In contrast to M. marinum-ppe10::tn [32], no altered colony morphology or

other growth phenotype was observed in M. tuberculosis-Δppe10. This finding is in concor-

dance with the absence of such a phenotype in ESX-5 mutants of M. tuberculosis and highlights

this as a species-specific difference between M. marinum and M. tuberculosis [32,57,76].
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We performed biochemical secretion analysis on the Δppe10 strain in parallel with the

strains that were examined (see below) for their immunogenic potential (Fig 1C). In contrast

to a previous report, we found that M. tuberculosis Δppe25-pe19 did secrete PPE41 and EsxN,

which may be due to differences in bacterial growth conditions and/or methods in protein

extraction and detection [76]. This strain harbors intact genes coding for the ESX-5-mem-

brane complex [57,77] and is able to induce in vivo CD4+ T-cell responses against PE and PPE

proteins, in contrast to the general ESX-5 deficient strain ΔeccD5 in the same background

[58,68]. The Δppe10 strain showed no difference in PE_PGRS secretion. Similarly, secretion of

EsxA and EsxN was not affected by deletion of ppe10. Although slightly elevated levels of

PPE41 secretion were observed, we concluded from these combined data that M. tuberculosis-
Δppe10 does not have a general supersecretion phenotype as was previously reported for M.

marinum-ppe10::tn [32].

BCG and M. tuberculosis-Δppe38-71 are unable to induce immune

responses against PPE10

To assess the specificity of the newly identified PPE10 epitopes and to better understand the

effect of the ppe38-dependent secretion on immunogenicity, we immunized C57BL/6 x CBA

Fig 4. Epitope mapping of PPE10 identifies two novel immunogenic T-cell epitopes. C57BL/6 H-2b (black) or C57BL/6 x CBA

(H-2b/k) F1 mice (B6CBAF1, blue) were immunized s.c. with 1 x 106 CFU/mouse of M. tuberculosis H37Rv (Mtb, filled bars), or

were left non-immunized (N.I. empty bars). Three weeks post-immunization, splenocytes were stimulated with control peptides

or a library of 15-mers spanning PPE10 excluding the PPE domain. T-cell mediated IFN-γ responses were quantified buy ELISA

as a measure of immunogenicity. Two immunogenic PPE10-peptides were identified (PPE10221-235 & PPE10381-395) in B6CBAF1

mice. Error bars depict standard deviation over two technical replicates. This figure depicts only newly identified epitopes and

controls. Full results of the pep-scan epitope mapping can be found in S2 Fig.

https://doi.org/10.1371/journal.ppat.1007139.g004
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F1 mice with the different M. tuberculosis and BCG strains for which the secretion phenotype

was characterized (Fig 1C). Three weeks post-immunization, splenocytes were collected and

stimulated with the PPE10221-235 and PPE10381-395 peptides, as well as purified protein derivate

(PPD—a positive control for immunization by Mycobacteria) and a number of known anti-

genic peptides derived from proteins secreted via ESX-1 (EsxA1-20 [78] and CFP-1011−25 [79]),

ESX-5 (PE191-18 and PPE251-20 [58]) or the twin-arginine-translocation (TAT) pathway

(Ag85A241-260) [80,81]. As expected, splenocytes of mice immunized with M. tuberculosis
CDC1551 produced high levels of IFN-γ after stimulation with PPE10221-235, PPE10381-395 or

all other immunogenic peptides, but not when incubated with a negative control peptide (E.

coli MalE100-114), or the medium control (Fig 5). The Δppe10 deletion strain did not induce

IFN-γ production in response to either PPE10221-235, or PPE10381-395, whereas responses

against the other peptides were unaffected (Fig 5). Unexpectedly, this result shows that both of

the newly identified PPE10 peptides are highly specific, even though we hypothesized cross-

reactivity to occur for PPE10221-235, because of the high similarity to other MPTR domains (S3

Table). As expected, the ESX-5 secretion mutant eccC5::tn did not induce T-cell responses

against the ESX-5 substrates PE19, PPE25 and PPE10, further confirming that the export of

these antigens by the ESX-5 secretion system is indispensable for the induction of T-cell

immune responses [58,68,82]. Importantly, Δppe38-71 was not able to induce immunogenicity

against either of the PPE10 epitopes, a phenotype that was fully reverted in the complemented

strain ppe38-71-C. This confirms that secretion and in vivo immunogenicity of PPE10 as a

model PPE-MPTR protein are dependent on PPE38 in the M. tuberculosis CDC1551 back-

ground, which we were previously unable to assess. Similar to Δppe38-71, also BCG was

completely unable to induce immune responses against either of the PPE10 epitopes. In con-

trast, BCG38 induced immunogenicity against both PPE10 epitopes at similar levels to the M.

tuberculosis isolates. Together, these results clearly confirm that the secretion and in vivo
immunogenicity of the ancestral PPE-MPTR protein PPE10 is strictly dependent on PPE38.

These data also provide evidence that the in vitro observed PPE38-dependence of PE_PGRS

and PPE-MPTR proteins is a phenotype that can be directly translated to the in vivo situation.

Here, we show that the vaccine strain BCG is unable to induce T-cell responses against the

ancestral PPE-MPTR protein PPE10, because of the deletion of its ppe38-71-locus as part of

RD5.

Finally, we compared the results obtained for the different WT and recombinant BCG

strains with a recently developed attenuated M. tuberculosis strain, deleted for 5 pe/ppe genes

in the esx-5 locus, named MtbΔppe25-pe19 [76]. Genes encoding the ESX-5 secretion core

machinery [57,77] are intact in this strain, as is the ppe38 gene, a finding which is confirmed

by the fact that this strain induced T-cell responses against both PPE10 epitopes. This result

highlights that attenuated M. tuberculosis vaccine strains may avoid certain M. bovis related

secretion differences that result in immunogenic properties.

Prime-boost vaccination regimen to improve PPE10-specific immune

responses does not increase protection against M. tuberculosis
The results of our epitope mapping analysis showed that C57BL/6 mice were unable to develop

T-cell responses against PPE10, which could provide an explanation for the lack of improved

protection conferred by BCG38 compared to BCG. Therefore, we performed a similar experi-

ment in these C57BL/6 x CBA F1 mice, designed to maximize any potential increase in

PPE-MPTR-specific immune responses, by boosting vaccination of BCG or BCG38 with the

immunogenic PPE10- peptides (Fig 6A). Sixty days after s.c. vaccination with BCG strains, a

CpG(DOTAP)-formulated peptide booster, or the adjuvant alone, was administered s.c.,
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Fig 5. Ability of mycobacteria to induce T-cell responses against PPE-MPTR protein PPE10 is dependent on functional ESX-5- and

PPE38-dependent secretion. C57BL/6 x CBA F1 mice were immunized with the indicated mycobacterial strains. Three weeks post-immunization,

splenocytes were stimulated with the indicated peptides and IFN-γ production was measured by ELISA. Responses to the newly identified

PPE10-derived immunogenic peptides are depicted in blue. Error bars represent the standard deviation over two technical duplicates. The results are

representative of two biological replicates performed on different timepoints.

https://doi.org/10.1371/journal.ppat.1007139.g005
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followed by an intranasal booster twenty-nine days later. Mice were challenged by an aerosol

challenge of M. tuberculosis H37Rv nine days after the final booster and were killed 28 days

later to assess lung and spleen bacterial burdens (Fig 6B and 6C). No significant differences

were observed among the groups of vaccinated animals. Only a modest decrease in spleen

CFUs was achieved by any of the vaccination regimens. This reduction was not significant

(p<0.05) for BCG-vaccinated mice and injected with the adjuvant alone, but was significant

for the three other groups. However, no significant differences between any of the vaccinated

groups was detected. Vaccination with all regimens reduced lung CFU values at least 10-fold.

Fig 6. Boosting PPE10 specific immune responses does not increase protection against M. tuberculosis. A) Graphical representation of the prime-boost vaccination

protocol. Mice were immunized with either BCG or BCG38 (Green). 60 days post-infection (d.p.i.) C57BL/6 x CBA F1 mice were injected s.c. with a booster consisting

of adjuvant CpG(DOTAP), alone or in combination with a mix of PPE10221-235 and PPE10381-395 peptides (blue). The same formulation was intranasally administered

four weeks later. Nine days after the intranasal boost, mice were exposed to M. tuberculosis H37Rv aerosol infection (220 CFU/lung 1 d.p.i). Bacterial lung (B) and

Spleen (C) burdens were assessed by dilution and counting 4 weeks post-infection (experimental end-point) after being photographed for macroscopic investigation

(S2C and S2D Fig). Each data point represents the CFU value of one organ from a single mouse, error bars depict the standard deviation. No significant differences

between the vaccination conditions were detected by ordinary one-way ANOVA followed by Tukey’s test of multiple comparisons. All vaccination conditions resulted

in a significant (p<0.01) reduction in lung burden compared to unimmunized controls (Ordinary one way ANOVA; Dunnett’s test of multiple comparisons against a

single control). For simplicity, this latter information is not depicted in the figure. Reduction in spleen CFUs was not significant for any of the vaccination conditions.

Statistical analyses were performed using PRISM software.

https://doi.org/10.1371/journal.ppat.1007139.g006
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In fact, vaccination with BCG38, boosted with PPE10-derived immunogenic peptides, had the

highest average bacterial lung burden of the four different vaccination regimens. These data

clearly oppose our hypothesis, that restoring the lack of PPE-MPTR immune responses in

BCG increases its protective efficacy.

Together, we could find no evidence of an immunomodulatory effect of PPE38-dependent

proteins. Inversely, restoration of BCG’s capacity to secrete PE_PGRS and PPE-MPTR pro-

teins and thereby enlarging the PE_PGRS/PPE-MPTR antigenic repertoire of BCG, did not

result in improved vaccine protection in two mouse models.

Discussion

We previously demonstrated that loss-of-function mutations in the ppe38-locus of M. tubercu-
losis block PE_PGRS and PPE-MPTR secretion and increase virulence in a mouse model [37].

In this work, we examined the correlation of known ppe38 deletions in other lineages of the

MTBC with a PE_PGRS/PPE-MPTR secretion defect. We hypothesized that the success of cer-

tain clinical isolates of Lineage 4 could perhaps be explained by their RD5-like deletion, which

includes ppe38 [51,83]. However, secretion analysis of these Lineage 4 strains revealed that a

single copy of PPE71 carrying a 21 bp deletion (corresponding to the loss of amino acids

MGGAGAG), seems to be functional and sufficient to support PE_PGRS secretion. Similarly,

although intriguing differences in protein secretion levels were observed between M. canettii
strains, we found that all analyzed strains secreted PE_PGRS proteins. The anticipated poly-

morphisms in the ppe38-locus of selected M. canettii strains [48] were likely caused by a

sequence assembly problem of repetitive sequences. These results highlight the difficulties of

bio-informatic analyses of this locus, which is hampered by the high sequence similarity

between ppe38 and ppe71, that seem to cause already some discrepancies between the reference

genomes of M. tuberculosis H37Rv and CDC1551 [29,37,38,84].

In contrast, our investigation of RD5-like polymorphisms did reveal that multiple members

of the animal adapted lineage of the MTBC are completely devoid of PE_PGRS secretion

because of their RD5 deletion. It should be emphasized that the RD5-like deletion of M. orygis
occurred independently of that of M. bovis and M. caprae. Furthermore, even more members of

the animal adapted lineage, such as M. microti, M. suricattae and the Dassie Bacillus, are

reported to have independent RD5-like deletions, which we hypothesize to also block PE_PGRS

and PPE-MPTR secretion [38,85–87]. Together, these findings suggest a specific selective

advantage associated to loss of the ppe38-locus and its associated secretion phenotype in certain

animal adapted strains. The modern Beijing strains, also defective in PPE38-dependent secre-

tion, have expanded concurrently with increased human population densities and mobility

[88]. These changes in the host-population alter the optimal balance between virulence/infectiv-

ity and lower the advantage to stay dormant or subclinical in the host [89]. It is tempting to

speculate that the loss of PPE38 and its associated secretion and virulence phenotype has helped

ancestral M. tuberculosis strains derived from human hosts, to adapt towards survival and trans-

mission in a new host niches.

We were surprised that we were able to restore the secretion defect of BCG by introducing

the ppe38-locus from M. tuberculosis. Since the RD5 deletion of BCG already occurred in the

most-recent common ancestor of M. bovis and M. caprae, this deletion likely dates back mil-

lennia [52]. Furthermore, the 13 years of in vitro culturing by Calmette and Guérin to create

BCG and the ensuing decades of culturing while it was distributed worldwide has caused accu-

mulation of even more mutations [6,10,11]. Still, introduction of the integrative vector consti-

tutively expressing the ppe38-locus was clearly able to at least partially restore both PE_PGRS

and PPE-MPTR secretion in BCG.
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Our newly identified immunogenic epitopes in the PPE-MPTR protein PPE10, provide a

tool to gain more understanding about this group of proteins. Firstly, although previous work

only definitively detected the C-terminal domain of PPE10 to be secreted [25,32,37], immuni-

zation with M. tuberculosis also clearly induced immune responses against the MPTR-associ-

ated epitope. This provides evidence that the MPTR domain is accessible to the host antigen

presentation machinery and that these repetitive domains have the potential to contain func-

tional T-cell epitopes. Furthermore, wild-type BCG and M. tuberculosis with impaired PPE38-

dependent secretion were completely unable to induce immune responses against PPE10,

similar to a general ESX-5 secretion mutant. We recently reported that processing, presenta-

tion on MHC-II and recognition of immunogenic proteins by CD4+ T-cells occurs only when

the protein is transported over the inner membrane by its cognate TypeVII secretion system

[82]. Secreted proteins, but also the cell-wall associated protein PE19 induced strong CD4+

T-cell responses, whereas this was not the case in an ESX-5 deficient isolate, where PE19 is

only present in the cytoplasm or associated to the plasma membrane [82]. Together with the

current work, this is important evidence that PPE38 is essential for the translocation of

PPE-MPTR proteins through the ESX-5 secretion machinery in vivo and that without PPE38,

these proteins are not surface associated or otherwise accessible to the immune system.

It is perhaps striking that the PE_PGRS and PPE-MPTR secretion defect of BCG has not

been previously reported, considering the amount of research done on this vaccine. Based on

the available literature on PE_PGRS and PPE-MPTR proteins, it is logical to hypothesize that a

vaccine strain that does not secrete these proteins might in fact be a relatively effective vaccine.

Many immunomodulatory properties have been attributed to PE_PGRS and PPE-MPTR pro-

teins [14,33,34,67]. Perhaps the most relevant of these, is the reported function of certain

PE_PGRS proteins to inhibit antigen presentation [35,36]. If PE_PGRS proteins indeed inhibit

antigen presentation, it would be highly detrimental to introduce a vaccine that secretes these

proteins. Notably, this is an urgent question since a number of novel tuberculosis vaccine can-

didates based on attenuated M. tuberculosis are currently in clinical or pre-clinical develop-

ment. We showed for one of these candidate vaccines (i.e. M. tuberculosis-Δppe25-pe19), that

PE_PGRS and PPE-MPTR secretion is indeed fully functional [58,68,76]. Our isogenic

Δppe38-71 strains of M. tuberculosis and the BCG38 strain form an ideal tool to answer such

questions and to understand more about these proteins as a group. In this work, we did not

find any evidence of inhibition of antigen presentation in strains secreting PPE38-dependent

substrates, or lack thereof in strains without PPE38. Similarly, and in contrast to many reports

of immunomodulatory effects of PE_PGRS proteins, we did not find any evidence of differen-

tial immune modulation by strains with, or without, functional PPE38-dependent secretion.

More specifically, no differences were observed in DC maturation [90], MHC-I or -II expres-

sion [62] or cytokine production [91–93]. Finally, PE_PGRS and PPE-MPTR proteins have

often been implicated as mycobacterial virulence factors [14,34,35,94,95]. The previously

described increased virulence in strains lacking PPE38-dependent secretion, including the

hypervirulent Beijing isolates, put this work in perspective [37]. Here, we bolster our previ-

ously published evidence that strains without PPE38, including a number of animal adapted

species and the BCG vaccine, are truly unable to translocate these proteins. Although many of

these animal adapted strains have reduced virulence in humans compared to M. tuberculosis,
they are clearly pathogenic for their natural host and should not be seen as attenuated [96].

This is in line with a role for PPE38-dependent substrates as virulence attenuating factors [37].

The biological roles of the PE_PGRS and PPE-MPTR proteins that are reported to be required

for virulence, may not require secretion of these effector proteins or might in certain cases be

due to indirect effects on other proteins. This hypothesis is further supported by the fact that

many of the studies that attribute virulence traits to PE_PGRS and PPE-MPTR proteins, are

BCG vaccine is deficient in PE_PGRS/PPE-MPTR secretion

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007139 June 18, 2018 16 / 29

https://doi.org/10.1371/journal.ppat.1007139


performed in M. smegmatis, which lacks an ESX-5 secretion system and is unable to secrete

these proteins [27,33,77]. Further work on the biological function of PE_PGRS and PPE-

MPTR proteins, either on an individual basis or grouped, will have to take into account these

findings and critically assess the impact of localization on effector function. Whether comple-

mentation of the ppe38-locus in BCG might further attenuate BCG strains or otherwise affect

persistence in the host was not studied in further detail, in part because BCG38 did not confer

superior protection to M. tuberculosis infection. However, we do not expect significant viru-

lence differences between BCG and BCG38, since PPE38-dependent virulence effects generally

occur in the chronic infection stage [37], when BCG is already expected to be cleared.

Perhaps the most relevant finding of this work is that BCG is unable to secrete PE_PGRS

and PPE-MPTR proteins and therefore does not raise T-cell responses against these proteins.

Previous studies have shown that antibodies can be raised against PE_PGRS proteins, suggest-

ing that it could be a beneficial property of a vaccine to secrete these proteins [25,97,98]. Here

we provide evidence that PPE-MPTR proteins can be immunogenic in mice, which is further

supported by a recent publication investigating immunogenicity of the PPE-MPTR protein

PPE39 [72]. Kim et al. identified two immunogenic epitopes of which one (MTBK_2482085

−102) is located in the PPE-domain and has high homology to non-MPTR PPE proteins, while

the other (MTBK_24820217−234) was located in the MPTR domain of this protein. Interest-

ingly, the authors reported that vaccination with the recombinant PPE39 protein induced a

higher level of protection against M. tuberculosis Erdman, compared to a hypervirulent Beijing

isolate [72]. This difference might be explained by our data, which suggest that immune

responses against the MPTR epitope would not be helpful against a PPE38-deficient Beijing

isolate. A related issue that requires further work is whether the PPE38-dependent secretion

effect in modern Beijing isolates is somehow related to that of the BCG vaccine and whether

their respective secretion defects affect vaccine efficacy.

There is strong evidence for the importance of PPE-MPTR proteins in human immune

responses, because the PPE-MPTR protein PPE42 (Rv2608) is an integral part of the subunit

fusion-protein vaccine candidate ID93 [65,71]. The fusion protein ID93 consists of four different

proteins and has been tested as a vaccine candidate in both a Phase 1 and Phase 2A clinical trial

[99,100]. Bertholet et al. 2008 demonstrated that PBMCs isolated from PPD+ healthy subjects pro-

duced IFN-γ in response to PPE42 and that almost 70% of subjects showed a reaction against the

recombinant protein in a recall experiment [71]. Interestingly, 100% of PPD+ subjects exhibited

recall responses against the other (non-MPTR) PPE proteins that were tested, which could possi-

bly be explained by exposure to modern Beijing, or other PPE38-deficient strains, in the subject

cohort. PPE42 was selected as part of the ID93 vaccine due to its excellent ability to induce both

humoral and cellular immune responses and immunization with PPE42 provided protection in

mice almost comparable to BCG [65,71]. In Guinea pigs, ID93 significantly boosted the protection

induced by BCG, which was interpreted as an ability to boost immune responses elicited by BCG

[65]. However, based on our work it should be assumed that BCG does not induce immune

responses against the PPE-MPTR protein PPE42 and that boosting with ID93 may in fact broaden

antigenic repertoire of the combined vaccination. Similarly, ID93 is able to induce protective

immune responses to the M. tuberculosis Beijing isolate HN878, but it is unclear what the role of

PPE42 is in this response. The analyses performed in Bertholet et al. 2010 and Baldwin et al. 2015

were performed with the four-gene fusion protein ID93 and not with the individual PPE42 sub-

unit, which makes it impossible to assess these questions more thoroughly. What remains clear

however, is that the PPE-MPTR protein PPE42 is an important part of a vaccine currently in clini-

cal trials. The finding that ID93 includes a protein to which parental BCG is likely not able to

induce immune responses, may actually put the proven booster qualities of this vaccine candidate

in a different light and lead to optimal strategies to employ it.
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The question whether immune responses against PPE38-dependent proteins are important

for a vaccine to be protective against tuberculosis, needs an urgent answer, especially since it

concerns a total of 89 proteins. There are multiple vaccine candidates in clinical, or pre-clini-

cal, development that are based on attenuated M. tuberculosis strains and which likely secrete

PE_PGRS and PPE-MPTR proteins [24,58,67,68,76,101]. Should we knock-out ppe38-71 in

these vaccine candidates to avoid immune modulation by the secreted substrates, or should we

prioritize these vaccine candidates, because they have a broader potential repertoire of epi-

topes? Should BCG vaccination be boosted by vaccine candidates including PPE-MPTR pro-

teins such as ID93, or should this be avoided? Are there differences between designing vaccine

candidates against strains secreting PE_PGRS/PPE-MPTR proteins and those with a PPE38-

dependent secretion defect, such as the modern Beijing isolates? Are murine or other small

animal infection models appropriate to predict PE_PGRS and PPE-MPTR-mediated impact

on vaccine efficacy? These are questions that we are not yet able to answer in this work, but

they reveal the need to increase our understanding of PE_PGRS and PPE-MPTR proteins. Bet-

ter knowledge on PE_PGRS/PPE-MPTR proteins is not just an intellectual goal, but may also

help to make more informed decisions in the design of novel vaccines against tuberculosis.

Methods

Strains and growth conditions

All strains used in the study and the sources they are derived from can be found in S5 Table.

Unless otherwise specified, all mycobacterial strains were grown on Middlebrook 7H11 solid

medium (Difco) supplemented with OADC (BD Biosciences), or liquid 7H9 medium supple-

mented with ADC supplement and 0.05% Tween-80. Antibiotics were added where opportune

at a concentration of 50μg/ml for Hygromycin (Euromedex), or 25μg/ml for Kanamycin

(Sigma). Strains were incubated at 37ºC. Liquid cultures were grown in shaking conditions at

80 rotations per minute. For animal-adapted strains M. bovis, M. caprae, M. orygis and M. pin-
nipedii, 0.2% w/v of Pyruvate (Sigma) was added to the growth medium [102]. Infection stocks

of M. tuberculosis H37Rv used for aerosol infection experiments and BCG or BCG38 vaccina-

tion stocks without Tween-80 were prepared by inoculating 0.1 OD/ml bacteria in 100ml liq-

uid culture without Tween-80. This culture was incubated for 7 days, after which it was

washed with phosphate buffered saline (PBS) and sonicated (5x (100 pulses of 0.1s)) and left to

rest for at least one hour before collecting the cell suspension considered to obtain a single-cell

solution of encapsulated mycobacteria. Standard vaccination stocks were prepared in Dubos

medium containing 0.025% Tween-80 in standing conditions and were harvested at an optical

density between 0.4 and 0.7 OD600/ml.

PCR verification of RD5 deletions

RD5 deletions were PCR verified by previously published primers specific for plcA (rv2351c, S4

Table), which produce a product of approximately 500bp when this gene is present [52]. Prim-

ers amplifying the ppe38-71-locus (S4 Table) produce a 3378bp product when the complete

ppe38-71 locus is present [38]. This includes two copies of ppe38/71 (mt2419/mt2422) flanking

the esxX (mt2420) and esxY (mt2421) in between in CDC1551. When only one copy of ppe38
and no esxX/esxY are present this PCR produces a product of approximately 1500 bp [38].

Recombinant strains and mutant construction

The complementation plasmid containing the ppe38-locus from CDC1551 (mt2419-22) under

expression of hsp60 promoter was previously described [37]. The cosmid containing the RD5
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region (pYUB::RD5) was part of the library described by Bange et al. 1999 and contains the

genetic region spanning 2,611 kb– 2,645 kb of the M. tuberculosis H37Rv reference genome

[29,103].

M. tuberculosis-Δppe10 was constructed as described by Bardarov et al. [75]. The homolo-

gous recombination construct was created by a PCR combining primers PPE10 KO LF & LR

to amplify the 3’ end of rv0442c and another PCR with primers PPE10 KO RF & PPE10 KO

RR to amplify the 5’ end of rv0442c (See S4 Table for primer sequences). After phage packaging

and infection, seven transformed colonies were tested by PCR with either primer PPE10(mtb)

flank F & p0004s-HR, or PPE10(mtb) flank R & p0004s-HL (S4A and S4B Fig). All colonies

were found to have the correct deletion spanning from 152bp to 1133bp after the 5’ of rv0442c.
We attempted to complement the Δppe10 mutant with a previously published plasmid

(p19kPro::rv0442c-HA) overexpressing HA-tagged PPE10 under control of the lpqH promotor

[25]. Although clones expressing the HA-tag on this plasmid were obtained, these had a con-

siderable in vitro growth defect, which would conflict with in vivo and in vitro studies and

therefore this complemented strain was not analyzed further.

Secretion analysis

Strains were pre-cultured until mid-logarithmic phase under normal growth conditions

(described above). Cultures were washed two times in 7H9 medium without ADC, supple-

mented with 0.2% Dextrose and 0.05% Tween and were incubated in this medium for 48

hours. Cultures were centrifuged to separate cells and the supernatant was filtered through a

0.02μm filter, after which it was TCA-precipitated to concentrate. Cellular material was

washed with PBS, resuspended in solubilisation/denaturation buffer and boiled for 10 min at

95˚C. After sterilisation by heating for 2 hours at 80˚C, samples were sonicated to disrupt cells

and boiled at 95˚C during 10 minutes.

Samples were loaded on 12% or 4–12% SDS-Page gels (NuPage, Novex, Life technologies)

and transferred to nitrocellulose filters by dry western blotting (iBlot, Invitrogen). Proteins

were stained by primary antibodies: Anti-PGRS 7C4.1F7 [25] (Clone 7C4.1F7 was a kind gift

from Michael J. Brennan, USA), polyclonal anti-SigA (Kind gift from I. Rosenkrands, Den-

mark), Rabbit polyclonal anti-EsxN (rMTb9.9A) [104], monoclonal ESAT-6 (hyb76-8), or anti

PPE41 [105].

Cell infection, ELISA and flow cytometry

BM-DCs derived from C57BL/6 (H-2b) female mice were generated directly in 6-well plates

and infected at day 6 of culture with different mycobacterial strains at M.O.I of 0.5 in RPMI

1640-GlutaMax medium (Invitrogen) containing 10% FBS (4 x 106 cells/well in 4 ml volume).

After over-night of infection at 37˚C and 5% CO2, IL-6 (clone MP5-20F3 for coating and

clone MP5-32C11 for detection, BD Pharmingen), IL12p40/70 (clone C17.8 RUO, BD Phar-

mingen) and TNF-α (clone 1F3F3D4 for coating and clone clone XT3/XT22 for detection,

eBioscience) cytokine production was quantified in the culture supernatants by ELISA.

For viability and phenotypic maturation evaluation, infected DCs were washed with PBS

and incubated first with Live/Dead-Pacific Blue reagent (Invitrogen) during 35 minutes at

10˚C in the dark. Cells were then washed twice and incubated with appropriate dilution of

anti-CD16/CD32 (2.4G2 mAb, BD Pharmingen) during 20 minutes followed by surface stain-

ing by 30 minutes of incubation with appropriate dilutions of APC-anti-CD11b (BD Pharmin-

gen), PE-Cy7-anti-CD11c (BD Pharmingen), FITC-anti-CD40 (clone HM40-3, SONY), FITC-

anti-CD80 (B7-1) (clone 16-10A1 Biolegend), FITC-anti-CD86 (B7-2) (clone PO3, SONY),

FITC-anti-MHC-II (I-A/I-E) (clone MS/114.15.2, eBioscience), FITC-anti-MHC-I (H-2kb)
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(clone AF6-88-5-5-3, eBioscience) or FITC-anti-IgG1k isotype control. The stained cells were

washed twice with FACS buffer (PBS containing 3% fetal bovine serum (FBS) and 0.1% NaN3)

and then fixed with 4% paraformaldehyde during 18h at 10˚C prior to sample acquisition by a

LSR Fortessa flow cytometer system (BD Bioscience) and BD FACSDiva software. The

obtained data were analyzed using FlowJo software (Treestar, OR, USA).

Antigen presentation assay

BM-DCs derived from BALB/c (H-2d) female mice were used at day 6 of culture as antigen

presenting cells. Cells were seeded in 96-well plates at 5 x 104 cells/well and loaded with 1 μg/

ml of homologous or negative control synthetic peptides, or infected with different mycobacte-

rial strains with serial two-fold dilutions of M.O.I., starting at M.O.I. = 10, in RPMI 1640-Glu-

taMax medium (Invitrogen) containing 10% FBS. After 18h of infection at 37˚C and 5% CO2,

cells were washed twice with RPMI medium to eliminate the IL-2 possibly produced by the

infected DCs and then co-cultured with 1 x 105 cells/well of T-cell hybridoma specific to

EsxH/TB10.474−88 (1G1) or Ag85A101-120 (2A1), respectively restricted by I-Ad or I-Ed. After

over-night of co-culture at 37˚C and 5% CO2, the IL-2 secretion was quantified in the culture

supernatants by ELISA (clone JES6-1A12 for coating and clone JES6-5H4 for detection, BD

Pharmingen).

Epitope mapping of PPE10 and T-cell assay

A peptide library of sixty 15-mers with a 5-amino acid shifting frame, spanning amino acids

181–487 of PPE10 (Rv0442c), was constructed commercially (Mimotopes Europe, United

Kingdom). Epitope screening of PPE10 and immunogenicity assays were performed as previ-

ously described [58], with some modifications. Briefly, 6-8-week-old female C57BL/6 (H-2b)

or C57BL/6 x CBA F1 (H-2b/k) mice were immunized s.c. with 1 x 106 CFU/mouse of different

mycobacterial strains obtained from exponential culture in Dubos medium. Epitope mapping

was performed with mice immunized with M. tuberculosis H37Rv. Three to four weeks post-

immunization, mice were sacrificed and pool of total splenocytes (n = 2 mice per group) were

restimulated in 96-well flat-bottom plates (TPP, Den- mark) at 5 x 105cells per well in HL-1

medium (Biowhittaker, Lonza, France), complemented with 2 mM GlutaMax (Invitrogen, Life

Technologies, France), 5 x 10−5 M β-mercaptoethanol, 100 U/ml penicillin and 100 μg/ml

streptomycin (Sigma-Aldrich, France) in the presence of 10–20 μg/ml of individual peptides.

IFN-γ production in the supernatant was quantified by ELISA after 72h of culture at 37˚C and

5% CO2 (clone AN-18 for coating and clone R46A2 for detection), BD Pharmingen.

Protection assays

BCG and BCG38 were grown in 10ml Dubos medium or in 100ml 7H9-medium with ADC-

supplement without Tween-80. M. tuberculosis H37Rv and BCG-strains cultured without

Tween-80 were sonicated (5 X 100 pulses; 0.1 seconds/pulse; 0.9 seconds’ rest; amplitude 30%)

to disrupt clumps and were frozen at -80˚C. Frozen stocks were counted for CFU’s before

immunization to assess dose while the dose of Dubos-grown strains was estimated based on

optical density.

Eight-week-old C57BL/6 mice (n = 5 mice/group), were immunized with 1 x 106 CFU/

mouse of BCG Danish (cultured—or + Tween-80), or BCG38 (cultured—or + Tween-80) in

200 μl PBS. Eight mice were concurrently injected with sterile PBS. Thirty days after vaccina-

tion, mice were challenged with aerosolized WT M. tuberculosis H37Rv strain. Three mice

were sacrificed to assess bacterial lung burdens 1 day post challenge (assessed at 680 CFU/

lung). All other mice were killed four weeks post-challenge due to human end-point criteria of
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unvaccinated mice. Lungs and spleens were homogenized by beadbeating, serially diluted in

PBS and plated on 7H11 plates with (Lungs) or without (spleens) BBL MGIT PANTA (Beck-

ton Dickinson, Ireland).

The Prime-boost vaccination and challenge experiment was performed similar as above,

with the following modifications. BCG or BCG38 were precultured in Dubos medium and five

first generation C57BL/6 x CBA crossover mice were left unvaccinated or s.c. immunized

(n = 5 mice/group). Eight weeks post-immunization, a subcutaneous boost was administered.

This boost consisted of 200 μl/mouse of formulation containing 50 μl of each PPE10-derived

peptide (PPE10221-235 and PPE10381-395) ProteoGenix, France, 30 μg of CpG 1826 oligodeoxy-

nucleotides as adjuvant (Sigma-Aldrich, France) at 1 μl/mL concentration, 60 μl of liposomal

transfection reagent DOTAP (N-[1-(2,3-DioleOyloxy)]-N,N,N-Trimethyl Ammonium Pro-

pane methylsulfate, Roche, France) and 10 μl Opti-MEM (Life Technologies, France) as

described in Sayes et al., 2016 [68]). Four weeks later, an intranasal boost was given to mice via

intra-nasal route, under anesthesia as described in Sayes et al., 2016, 25 μl/mouse contained

10 μg of PPE10 peptides, 2 μg of CpG at 10 μl/mL concentration, 10 μl of DOTAP and 3 μl

Opti-MEM contained in 20 μl/mouse [68]. Ten days after the intranasal boost, mice were aero-

sol challenged with WT M. tuberculosis H37Rv strain. Three non-immunized mice were killed

one day post challenge to assess infectious dose administered, which was calculated at 220

CFU/lung. Four weeks later all other mice were killed and one lung and the spleen were

homogenized with a MillMixer organ homogenizer (Qiagen, Courtaboeuf, France) and plated

to assess bacterial burdens on 7H11 Agar medium supplemented with ADC (Difco, Becton

Dickinson). The CFU were counted after 3–4 weeks of incubation at 37˚C.

All immunized and infected mice for immunogenicity and protection experiments were placed

and manipulated in isolator in BSL-III protection-level animal facilities at the Institut Pasteur.

To determine the statistical significance of the data, analyses were performed by use of

GraphPad Prism software (GraphPad Software, La Jolla, CA, USA), using ordinary one-way

ANOVA followed by Tukey’s test for multiple comparisons.

Ethics statement

All animal experiments were performed in animal facilities that meet all legal requirements in

France and by qualified personnel in such a way to minimize discomfort for the animals. All

procedures including animal studies were conducted in strict accordance with European and

French regulations (Directive 86/609/CEE and Decree 87–848 of 19 October 1987). All proto-

cols were reviewed and approved by the Institut Pasteur Safety and Animal Care and Use

Committee (Protocol 11.245) and the local ethical committee CETEA “Comité d’Ethique en

Expérimentation Animale” (approved protocols CETEA 2012–0005 and CETEA 2013–0036).

Supporting information

S1 Fig. Immunoblot secretion analysis reveals PPE38-dependent secretion defect in BCG,

but not in M. canetti, or M. tuberculosis Mj-sublineage Lineage 4 strains affecting the

Nunavik Inuit. Immunoblots of whole-cell lysates or culture filtrates of the indicated M.

canetti (A), M. tuberculosis (B) or BCG (C, D) isolates [48,51]. A) Although differences in pro-

tein secretion could be observed between different M. canetti isolates (A-J), all isolates exhib-

ited PE_PGRS secretion. B) PE_PGRS secretion of Mj-sublineage strains with a deletion

affecting ppe38, but not ppe71 (Lanes 4–8) was not discernible from Lineage 4 control isolate

CDC1551 or an isolate from the same cohort without this deletion (MT13848). C) Introduc-

tion of plasmid pMV::ppe38-71 in BCG complemented PE_PGRS secretion (BCG38), while

complementation was not observed when performed with pYUB::RD5, even though presence
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of genetic presence of RD5 was PCR-confirmed with primers RD5B-plcA.int.F/R [52]. D)

Immunoblot secretion analysis of five genetically divergent BCG isolates confirms the PE_PGRS

secretion defect in all BCG isolates. Cop. 38 indicates the strain M. bovis BCG Copenhagen,

transformed with vector pMV::ppe38-71 and is hereafter referred to as BCG38. Anti-SigA stain-

ing is uses as a lysis control in A and D, while anti-GroEL2 is used in B and C. Strain details can

be found in S5 Table. Full blots of panels A-D are depicted in S5 Fig and S6 Fig.

(TIF)

S2 Fig. Harvested lungs and spleens from vaccinated and M. tuberculosis infected mice.

Organs depicted in A and B correspond to the experiment depicted in Fig 3. Organs depicted

in C and D correspond to the experiment depicted in Fig 6. After photography of the lungs (A,

C), a single lung lobe was used for lung CFU quantification. Splenomegaly (B, D) was reduced,

by all vaccination conditions, but did not differ markedly between vaccination conditions.

(TIF)

S3 Fig. Epitope mapping of a peptide library identifies two PPE10 epitopes that are immu-

nogenic in C57BL/6 x CBA mice. IFN-γ production in response to peptides covering the indi-

cated amino acid positions of PPE10 (Rv0442c) in C57BL/6 (grey/green) or C57BL/6 x CBA

F1 (B6CBAF1, blue/brown) mice. Mice were immunized with M. tuberculosis H37Rv (left) or

unimmunized (right).

(TIF)

S4 Fig. Construction and secretion analysis of M. tuberculosis CDC1551-Δppe10. A) Sche-

matic representation of deletion strategy and primers. The genetic region around PPE10, as

taken from tuberculist, is depicted in colored arrows [74]. Flanking fragments used for homol-

ogous recombination are depicted in black bars. Left (PPE10KO-LF and PPE10KO-LR) and

right (PPE10KO-RF and PPE10KO-RR) flanking regions were amplified by primers depicted

in black. Primers used to verify successful homologous recombination are depicted in dark

blue. All primer sequences can be found in S4 Table. B) PCR verification of successful homolo-

gous recombination in seven different colonies that grew on hygromycin selection plates. Col-

ony 1 was taken for further analyses. Full gels used to create B are depicted in S7 Fig.

(TIF)

S5 Fig. Full blots corresponding to panels depicted in Fig 1B and S1D Fig.

(TIF)

S6 Fig. Full blots corresponding to panels depicted in S1A–S1C Fig.

(TIF)

S7 Fig. Full blots and gels corresponding to panels depicted in Fig 1C and S4B Fig.

(TIF)

S1 Table. Mean fluorescent intensities and percentage of live C57BL/6 BM-DCs, infected

(MOI = 0.5) with indicated strains of M. tuberculosis or M. bovis BCG with or without the

ppe38-locus. As expected, the percentage of live cells was higher for BCG-infected cells than

for cells infected with M. tuberculosis strains, but did not vary significantly between isogenic

strains (� 1.0% difference between isogenic strain). These values are derived from the experi-

ment depicted in Fig 2A.

(PDF)

S2 Table. Why there are more variants of MHC-II restricting molecules available in

C57BL/6 x CBA F1 mice than in C57BL/6 or CBA mice? A promoter mutation disrupts pro-

duction of I-Eαb in C57BL/6 mice (Grey font), which are therefore unable to produce MHC-II
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I-E (Grey). In contrast, H-2k mice can produce both I-Aαk I-Aαk and I-Eαk I-Eαk. C57BL/6 x

CBA F1 mice have an even bigger repertoire of possible functional MHC-II isoforms available

due to heterodimerization of α and β subunits from H-2b and H-2k haplotypes.

(PDF)

S3 Table. Sequence identity determined by BlastP search of immunogenic epitopes against

the genome of M. tuberculosis H37Rv [29,106]. Black letters indicate identical amino acids.

Red letters indicate non-identical amino acids. Top: homologues of the MPTR-containing

peptide PPE10221-235 ordered by percentage of sequence identity. Bottom: Homologues of the

peptide PPE10381-395, which is part of the C-terminal secreted domain of PPE10.

(PDF)

S4 Table. Primers used in this study.

(PDF)

S5 Table. Bacterial strains used in this study.

(PDF)
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