R. B. Abramovitch, K. H. Rohde, F. F. Hsu, R. , and D. G. , aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome, Mol. Microbiol, vol.80, pp.678-694, 2011.

N. Aguilo, J. Gonzalo-asensio, S. Alvarez-arguedas, D. Marinova, A. B. Gomez et al., Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis, Nat. Commun, vol.8, p.16085, 2017.

C. Allix-bé-guec, D. Harmsen, T. Weniger, P. Supply, and S. Niemann, Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates, J. Clin. Microbiol, vol.46, pp.2692-2699, 2008.

S. F. Altschul, T. L. Madden, A. A. Schä-ffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

E. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine et al., viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, Nat Biotechnol, vol.31, pp.545-552, 2013.

L. S. Ates, R. Ummels, S. Commandeur, R. Van-de-weerd, M. Sparrius et al., Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria, PLoS Genet, vol.11, p.1005190, 2015.

L. S. Ates, E. N. Houben, and W. Bitter, Type VII secretion: a highly versatile secretion system, Microbiol. Spectr, vol.4, pp.11-2015, 2016.

L. S. Ates, A. Dippenaar, R. Ummels, S. R. Piersma, A. D. Van-der-woude et al., Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis, Nat. Microbiol, vol.3, pp.181-188, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046016

K. S. Beckham, L. Ciccarelli, C. M. Bunduc, H. D. Mertens, R. Ummels et al., Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis, Nat. Microbiol, vol.2, p.17047, 2017.

J. C. Betts, P. Dodson, S. Quan, A. P. Lewis, P. J. Thomas et al., Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551, Microbiology, vol.146, pp.3205-3216, 2000.

D. Bottai, M. Di-luca, L. Majlessi, W. Frigui, R. Simeone et al., Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation, Mol. Microbiol, vol.83, pp.1195-1209, 2012.

P. Brodin, M. I. De-jonge, L. Majlessi, C. Leclerc, M. Nilges et al., Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity, J. Biol. Chem, vol.280, pp.33953-33959, 2005.

P. Brodin, L. Majlessi, L. Marsollier, M. I. De-jonge, D. Bottai et al., Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence, Infect. Immun, vol.74, pp.88-98, 2006.

P. A. Champion, Disconnecting in vitro ESX-1 secretion from mycobacterial virulence, J. Bacteriol, vol.195, pp.5418-5420, 2013.

J. M. Chen, M. Zhang, J. Rybniker, L. Basterra, N. Dhar et al., Phenotypic profiling of Mycobacterium tuberculosis EspA point mutants reveals that blockage of ESAT-6 and CFP-10 secretion in vitro does not always correlate with attenuation of virulence, J. Bacteriol, vol.195, pp.5421-5430, 2013.

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al., , 2009.

M. H. Daleke, A. Cascioferro, K. De-punder, R. Ummels, A. M. Abdallah et al., , 2011.

, Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway, Conserved Pro-Glu (PE) and, vol.286, pp.19024-19034

J. E. Deane, P. Abrusci, S. Johnson, L. , and S. M. , Timing is everything: the regulation of type III secretion, Cell. Mol. Life Sci, vol.67, pp.1065-1075, 2010.

R. S. Dewoody, P. M. Merritt, and M. M. Marketon, Regulation of the Yersinia type III secretion system: traffic control, Front. Cell. Infect. Microbiol, vol.3, p.4, 2013.

D. Luca, M. Bottai, D. Batoni, G. Orgeur, M. Aulicino et al., The ESX-5 associated eccBEccC locus is essential for Mycobacterium tuberculosis viability, PLoS ONE, vol.7, p.52059, 2012.

E. Dumas, C. Boritsch, E. Vandenbogaert, M. Rodríguez-de-la, R. C. Vega et al., Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291528

, Genome Biol. Evol, vol.8, pp.387-402

H. U. Ferris and T. Minamino, Flipping the switch: bringing order to flagellar assembly, Trends Microbiol, vol.14, pp.519-526, 2006.

S. Fishbein, N. Van-wyk, R. M. Warren, and S. L. Sampson, Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity, Mol. Microbiol, vol.96, pp.901-916, 2015.

H. A. Fletcher and L. Schrager, TB vaccine development and the End TB Strategy: importance and current status, Trans. R. Soc. Trop. Med. Hyg, vol.110, pp.212-218, 2016.

W. Frigui, D. Bottai, L. Majlessi, M. Monot, E. Josselin et al., Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP, PLoS Pathog, vol.4, p.33, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01370872

N. C. Gey-van-pittius, S. L. Sampson, H. Lee, Y. Kim, P. D. Van-helden et al., Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions, Proc. Natl. Acad. Sci. USA, vol.6, pp.11491-11496, 2006.

M. I. Grö-schel, F. Sayes, R. Simeone, L. Majlessi, and R. Brosch, ESX secretion systems: mycobacterial evolution to counter host immunity, Nat. Rev. Microbiol, vol.14, pp.677-691, 2016.

M. I. Grö-schel, F. Sayes, S. J. Shin, W. Frigui, A. Pawlik et al., Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection, Cell Rep, vol.18, pp.2752-2765, 2017.

R. Hershberg, M. Lipatov, P. M. Small, H. Sheffer, S. Niemann et al., High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography, PLoS Biol, vol.6, p.311, 2008.

S. Hervas-stubbs, L. Majlessi, M. Simsova, J. Morova, M. J. Rojas et al., High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection, Infect. Immun, vol.74, pp.3396-3407, 2006.

E. N. Houben, J. Bestebroer, R. Ummels, L. Wilson, S. R. Piersma et al., Composition of the type VII secretion system membrane complex, Mol. Microbiol, vol.86, pp.472-484, 2012.

T. Hsu, S. M. Hingley-wilson, B. Chen, M. Chen, A. Z. Dai et al., The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue, Proc. Natl. Acad. Sci. USA, vol.100, pp.12420-12425, 2003.

A. B. Kamath, J. Woodworth, X. Xiong, C. Taylor, Y. Weng et al., Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection, J. Exp. Med, vol.200, pp.1479-1489, 2004.

A. Kupz, U. Zedler, M. Stä-ber, C. Perdomo, A. Dorhoi et al., ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo, J. Clin. Invest, vol.126, pp.2109-2122, 2016.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

N. Lema^-itre, W. Sougakoff, C. Truffot-pernot, E. Cambau, J. P. Derenne et al., Use of DNA fingerprinting for primary surveillance of nosocomial tuberculosis in a large urban hospital: detection of outbreaks in homeless people and migrant workers, Int. J. Tuberc. Lung Dis, vol.2, pp.390-396, 1998.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, vol.25, pp.2078-2079, 1000.

M. I. Love, W. Huber, A. , and S. , Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

L. Majlessi, M. Simsova, Z. Jarvis, P. Brodin, M. J. Rojas et al., An increase in antimycobacterial Th1-cell responses by prime-boost protocols of immunization does not enhance protection against tuberculosis, Infect. Immun, vol.74, pp.2128-2137, 2006.

L. Majlessi, R. Prados-rosales, A. Casadevall, and R. Brosch, Release of mycobacterial antigens, Immunol. Rev, vol.264, pp.25-45, 2015.

M. Marrichi, L. Camacho, D. G. Russell, D. , and M. P. , Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria, J. Biol. Chem, vol.283, pp.35223-35235, 2008.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, C. et al., Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol. Microbiol, vol.46, pp.709-717, 2002.

, Cell Reports, vol.23, p.1083, 2018.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nat. Med, vol.9, pp.533-539, 2003.

C. J. Queval, O. R. Song, J. P. Carralot, J. M. Saliou, A. Bongiovanni et al., , 2017.

, Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling, Cell Rep, vol.20, pp.3188-3198

P. Ramakrishnan, A. M. Aagesen, J. D. Mckinney, and A. D. Tischler, , 2015.

, Mycobacterium tuberculosis resists stress by regulating PE19 expression, Infect. Immun, vol.84, pp.735-746

B. J. Rogerson, Y. J. Jung, R. Lacourse, L. Ryan, N. Enright et al., Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice, Immunology, vol.118, pp.195-201, 2006.

F. Sayes, L. Sun, M. Di-luca, R. Simeone, N. Degaiffier et al., Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential, Cell Host Microbe, vol.11, pp.352-363, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01104794

F. Sayes, A. Pawlik, W. Frigui, M. I. Grö-schel, S. Crommelynck et al., CD4+ T cells recognizing PE/PPE antigens directly or via cross reactivity are protective against pulmonary Mycobacterium tuberculosis infection, PLoS Pathog, vol.12, p.1005770, 2016.

L. Shi, R. North, and M. L. Gennaro, Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung, Infect. Immun, vol.72, pp.2420-2424, 2004.

R. Simeone, L. Majlessi, J. Enninga, and R. Brosch, Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access, Cell. Microbiol, vol.18, pp.1070-1077, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01899438

L. Solans, J. Gonzalo-asensio, C. Sala, A. Benjak, S. Uplekar et al., The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004183, 2014.

S. A. Stanley and J. S. Cox, Host-pathogen interactions during Mycobacterium tuberculosis infections, Curr. Top. Microbiol. Immunol, vol.374, pp.211-241, 2013.

M. H. Van-regenmortel, What is a B-cell epitope?, Methods Mol. Biol, vol.524, pp.3-20, 2009.

H. M. Vordermeier, R. G. Hewinson, R. J. Wilkinson, K. A. Wilkinson, H. P. Gideon et al., Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts, PLoS ONE, vol.7, p.40890, 2012.