M. Hagedorn, K. H. Rohde, D. G. Russell, and T. Soldati, Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts, Science, vol.323, pp.1729-1733, 2009.

E. C. Boritsch, A glimpse into the past and predictions for the future: The molecular evolution of the tuberculosis agent, Mol Microbiol, vol.93, pp.835-852, 2014.

T. J. Rowbotham, Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae, J Clin Pathol, vol.33, pp.1179-1183, 1980.

D. Corsaro, R. Michel, J. Walochnik, K. Müller, and G. Greub, Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia 'Candidatus Metachlamydia lacustris' (Chlamydiae: Parachlamydiaceae), Eur J Protistol, vol.46, pp.86-95, 2010.

T. R. Fritsche, R. K. Gautom, S. Seyedirashti, D. L. Bergeron, and T. D. Lindquist, Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses, J Clin Microbiol, vol.31, pp.1122-1126, 1993.

A. Croxatto, V. Murset, B. Chassot, and G. Greub, Early expression of the type III secretion system of Parachlamydia acanthamoebae during a replicative cycle within its natural host cell Acanthamoeba castellanii, vol.69, pp.159-175, 2013.

G. Greub and D. Raoult, Microorganisms resistant to free-living amoebae, Clin Microbiol Rev, vol.17, pp.413-433, 2004.

E. M. Weerdenburg, Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts, Infect Immun, vol.83, pp.1778-1788, 2015.

J. D. Cirillo, S. Falkow, L. S. Tompkins, and L. E. Bermudez, Interaction of Mycobacterium avium with environmental amoebae enhances virulence, Infect Immun, vol.65, pp.3759-3767, 1997.

N. Bakala and J. C. Goma, Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in mice, Infect Immun, vol.83, pp.780-791, 2015.

R. J. Wallace, B. A. Brown, and D. E. Griffith, Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous mycobacteria, Annu Rev Microbiol, vol.52, pp.453-490, 1998.

R. S. Duarte, Epidemic of postsurgical infections caused by Mycobacterium massiliense, J Clin Microbiol, vol.47, pp.2149-2155, 2009.

S. C. Leão, Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil, Future Microbiol, vol.5, pp.971-980, 2010.

K. N. Olivier, Nontuberculous Mycobacteria in Cystic Fibrosis Study Group (2003) Nontuberculous mycobacteria. I: Multicenter prevalence study in cystic fibrosis, Am J Respir Crit Care Med, vol.167, pp.828-834

A. Roux, Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France, J Clin Microbiol, vol.47, pp.4124-4128, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01857711

D. E. Griffith, W. M. Girard, R. J. Wallace, and J. , Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients, Am Rev Respir Dis, vol.147, pp.1271-1278, 1993.

T. Qvist, Comparing the harmful effects of nontuberculous mycobacteria and gram negative bacteria on lung function in patients with cystic fibrosis, J Cyst Fibros, vol.15, pp.380-385, 2016.

B. E. Jönsson, Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis, J Clin Microbiol, vol.45, pp.1497-1504, 2007.

J. M. Bryant, Emergence and spread of a human-transmissible multidrugresistant nontuberculous Mycobacterium, Science, vol.354, pp.751-757, 2016.

A. R. Cullen, C. L. Cannon, E. J. Mark, and A. A. Colin, Mycobacterium abscessus infection in cystic fibrosis. Colonization or infection?, Am J Respir Crit Care Med, vol.161, pp.641-645, 2000.

K. M. Kreutzfeldt, Molecular longitudinal tracking of Mycobacterium abscessus spp. during chronic infection of the human lung, PLoS One, vol.8, p.63237, 2013.

E. Catherinot, Acute respiratory failure involving an R variant of Mycobacterium abscessus, J Clin Microbiol, vol.47, pp.271-274, 2009.

A. Bernut, Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci, vol.111, pp.943-952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

A. Pawlik, Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus, Mol Microbiol, vol.90, pp.612-629, 2013.

A. Bernut, Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members, Mol Microbiol, vol.99, pp.866-883, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137603

E. Catherinot, Hypervirulence of a rough variant of the Mycobacterium abscessus type strain, Infect Immun, vol.75, pp.1055-1058, 2007.

A. Bernut, J. Herrmann, D. Ordway, and L. Kremer, The diverse cellular and animal models to decipher the physiopathological traits of Mycobacterium abscessus infection, Front Cell Infect Microbiol, 2017.

A. Roux, Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants, Cell Microbiol, vol.13, pp.692-704, 2011.

F. Ripoll, Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus, PLoS One, vol.4, p.5660, 2009.

J. O. Falkinham, E. D. Hilborn, M. J. Arduino, A. Pruden, and M. A. Edwards, Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa, Environ Health Perspect, vol.123, pp.749-758, 2015.

E. Cateau, Stenotrophomonas maltophilia and Vermamoeba vermiformis relationships: Bacterial multiplication and protection in amoebal-derived structures, Res Microbiol, vol.165, pp.847-851, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01427338

L. Moigne and V. , MgtC as a host-induced factor and vaccine candidate against Mycobacterium abscessus infection, Infect Immun, vol.84, pp.2895-2903, 2016.

E. J. Rubin, In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria, Proc Natl Acad Sci, vol.96, pp.1645-1650, 1999.

A. Roux, The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages, Open Biol, vol.6, p.160185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438481

E. Dumas, Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems, Genome Biol Evol, vol.8, pp.387-402, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291528

M. Unnikrishnan, C. Constantinidou, T. Palmer, and M. J. Pallen, The enigmatic Esx proteins: Looking beyond mycobacteria, Trends Microbiol, vol.25, pp.192-204, 2017.
DOI : 10.1016/j.tim.2016.11.004

URL : http://discovery.dundee.ac.uk/ws/files/11105473/TIMI_D_16_00183_R1_.pdf

M. Zhang, EspI regulates the ESX-1 secretion system in response to ATP levels in Mycobacterium tuberculosis, Mol Microbiol, vol.93, pp.1057-1065, 2014.

S. Raman, Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis, J Bacteriol, vol.188, pp.8460-8468, 2006.
DOI : 10.1128/jb.01212-06

URL : https://jb.asm.org/content/188/24/8460.full.pdf

J. A. Armstrong and P. D. Hart, Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J Exp Med, vol.134, pp.713-740, 1971.

S. Sturgill-koszycki, Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, vol.263, pp.678-681, 1994.

R. Simeone, D. Bottai, W. Frigui, L. Majlessi, and R. Brosch, ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection, Tuberculosis (Edinb), vol.95, pp.150-154, 2015.

R. Simeone, Cytosolic access of Mycobacterium tuberculosis: Critical impact of phagosomal acidification control and demonstration of occurrence in vivo, PLoS Pathog, vol.11, p.1004650, 2015.

D. Soroka, Characterization of broad-spectrum Mycobacterium abscessus class A ?-lactamase, J Antimicrob Chemother, vol.69, pp.691-696, 2014.

J. Augenstreich, ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis, Cell Microbiol, vol.19, p.12726, 2017.

L. Majlessi and R. Brosch, Mycobacterium tuberculosis meets the cytosol: The role of cGAS in anti-mycobacterial immunity, Cell Host Microbe, vol.17, pp.733-735, 2015.

R. Wassermann, Mycobacterium tuberculosis differentially Activates cGAS-and inflammasome-dependent intracellular immune responses through ESX-1, Cell Host Microbe, vol.17, pp.799-810, 2015.
DOI : 10.1016/j.chom.2015.05.003

URL : https://doi.org/10.1016/j.chom.2015.05.003

M. I. Gröschel, Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection, Cell Rep, vol.18, pp.2752-2765, 2017.

T. Adékambi, B. Salah, S. Khlif, M. Raoult, D. Drancourt et al., Survival of environmental mycobacteria in Acanthamoeba polyphaga, Appl Environ Microbiol, vol.72, pp.5974-5981, 2006.

I. Halloum, Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent, Proc Natl Acad Sci, vol.113, pp.4228-4237, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137599

I. Paz, Galectin-3, a marker for vacuole lysis by invasive pathogens, Cell Microbiol, vol.12, pp.530-544, 2010.
DOI : 10.1111/j.1462-5822.2010.01427.x

URL : https://hal.archives-ouvertes.fr/hal-00486248

T. Thurston, M. P. Wandel, N. Von-muhlinen, A. Foeglein, and F. Randow, Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion, Nature, vol.482, pp.414-418, 2012.
DOI : 10.1038/nature10744

URL : http://europepmc.org/articles/pmc3343631?pdf=render

R. Simeone, Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, p.1002507, 2012.
DOI : 10.1371/journal.ppat.1002507

URL : https://hal.archives-ouvertes.fr/pasteur-01899479

Y. S. Kim, Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection, Microbes Infect, vol.19, pp.5-17, 2017.
DOI : 10.1016/j.micinf.2016.09.001

T. A. Gray, Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria, Science, vol.354, pp.347-350, 2016.
DOI : 10.1126/science.aag0828

URL : https://science.sciencemag.org/content/sci/354/6310/347.full.pdf

E. Houben, Composition of the type VII secretion system membrane complex, Mol Microbiol, vol.86, pp.472-484, 2012.

A. M. Abdallah, Type VII secretion-Mycobacteria show the way, Nat Rev Microbiol, vol.5, pp.883-891, 2007.

K. Beckham, Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis, Nat Microbiol, vol.2, p.17047, 2017.

A. M. Abdallah, PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5, Mol Microbiol, vol.73, pp.329-340, 2009.

V. K. Singh, A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts, Cell Microbiol, vol.18, pp.1489-1507, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01453293

A. Tanne, A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis, J Exp Med, vol.206, pp.2205-2220, 2009.

H. Medjahed and A. K. Singh, Genetic manipulation of Mycobacterium abscessus, Curr Protoc Microbiol Chapter, 2010.

P. Poullet, S. Carpentier, and E. Barillot, ) myProMS, a web server for management and validation of mass spectrometry-based proteomic data, Proteomics, vol.7, pp.2553-2556, 2007.

G. S. Besra, Preparation of cell-wall fractions from mycobacteria, Mycobacteria Protocols (Humana, pp.91-108, 1998.