S. M. Pires, C. L. Fischer-walker, C. F. Lanata, B. Devleesschauwer, A. J. Hall et al., Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food, PLoS ONE, vol.10, 2015.

K. L. Kotloff, J. P. Nataro, W. C. Blackwelder, D. Nasrin, T. H. Farag et al., Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study, Lancet, vol.382, pp.209-222, 2013.

D. P. Sethuvel, N. K. Ragupathi, S. Anandan, and B. Veeraraghavan, Update on: Shigella new serogroups/serotypes and their antimicrobial resistance, Lett. Appl. Microbiol, vol.64, pp.8-18, 2017.

T. L. Hale, G. T. Keusch, S. Shigella-;-baron, and . Ed, University of Texas Medical Branch at Galveston, 1996.

M. P. Penatti, L. M. Hollanda, G. Nakazato, T. A. Campos, M. Lancellotti et al., Epidemiological characterization of resistance and PCR typing of Shigella flexneri and Shigella sonnei strains isolated from bacillary dysentery cases in Southeast Brazil, Braz. J. Med. Biol. Res, vol.40, pp.249-258, 2007.

B. Liang, A. P. Roberts, X. Xu, C. Yang, X. Yang et al., Transferable Plasmid-Borne MCR-1 in a Colistin-Resistant Shigella flexneri Isolate, Appl. Environ. Microbiol, vol.84, 2018.

R. Lan, M. C. Alles, K. Donohoe, M. B. Martinez, and P. R. Reeves, Molecular Evolutionary Relationships of Enteroinvasive Escherichia coli and Shigella spp, Infect. Immun, vol.72, pp.5080-5088, 2004.

K. A. Bliven and A. T. Maurelli, Evolution of Bacterial Pathogens within the Human Host

M. J. Van-den-beld and F. A. Reubsaet, Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli, Eur. J. Clin. Microbiol. Infect. Dis, vol.31, pp.431-446, 2012.

H. Canada, The Compendium of Analytical Methods, p.15, 2018.

H. L. Dupont, M. M. Levine, R. B. Hornick, and S. B. Formal, Inoculum size in shigellosis and implications for expected mode of transmission, J. Infect. Dis, vol.159, pp.1126-1128, 1989.

C. Duran, F. Nato, S. Dartevelle, L. N. Thi-phuong, N. Taneja et al.,

, Comparison of Rectal Swabs, Direct Stool and Stool Culture. PLoS ONE, issue.8, 2013.

M. Schmelcher, T. Shabarova, M. R. Eugster, F. Eichenseher, V. S. Tchang et al., Rapid Multiplex Detection and Differentiation of Listeria Cells by Use of Fluorescent Phage Endolysin Cell Wall Binding Domains, Appl. Environ. Microbiol, vol.76, pp.5745-5756, 2010.

Y. Fujinami, Y. Hirai, I. Sakai, M. Yoshino, and J. Yasuda, Sensitive Detection of Bacillus anthracis Using a Binding Protein Originating from ?-Phage, Microbiol. Immunol, vol.51, pp.163-169, 2007.

D. A. Schofield, D. J. Wray, and I. J. Molineux, Isolation and development of bioluminescent reporter phages for bacterial dysentery, Eur. J. Clin. Microbiol. Infect. Dis, vol.34, pp.395-403, 2014.

P. B. Yim, M. L. Clarke, M. Mckinstry, S. H. Lacerda, L. F. Pease et al., Quantitative characterization of quantum dot-labeled ? phage for Escherichia coli detection, Biotechnol. Bioeng, vol.104, pp.1059-1067, 2009.

R. Peltomaa, I. López-perolio, E. Benito-peña, R. Barderas, and M. C. Moreno-bondi, Application of bacteriophages in sensor development, Anal. Bioanal. Chem, vol.408, pp.1805-1828, 2016.

S. M. Doore, J. R. Schrad, W. F. Dean, J. A. Dover, and K. N. Parent, Shigella Phages Isolated during a Dysentery Outbreak Reveal Uncommon Structures and Broad Species Diversity, J. Virol, vol.92, pp.2117-2134, 2018.

S. R. Casjens and I. J. Molineux, Short Noncontractile Tail Machines: Adsorption and DNA Delivery by Podoviruses. In Viral Molecular Machines, Advances in Experimental Medicine and Biology, pp.143-179, 2012.
DOI : 10.1007/978-1-4614-0980-9_7

P. G. Leiman and M. M. Shneider, Contractile Tail Machines of Bacteriophages. In Viral Molecular Machines, Advances in Experimental Medicine and Biology, pp.93-114, 2012.

A. R. Davidson, L. Cardarelli, L. G. Pell, D. R. Radford, and K. L. Maxwell, Long Noncontractile Tail Machines of Bacteriophages. In Viral Molecular Machines, Advances in Experimental Medicine and Biology, pp.115-142, 2012.

N. K. Broeker and S. Barbirz, Not a barrier but a key: How bacteriophages exploit host's O-antigen as an essential receptor to initiate infection, Mol. Microbiol, vol.105, pp.353-357, 2017.

N. K. Broeker, D. Andres, Y. Kang, U. Gohlke, A. Schmidt et al., Complex carbohydrate recognition by proteins: Fundamental insights from bacteriophage cell adhesion systems, Perspect. Sci, vol.11, pp.45-52, 2017.

A. Schmidt, W. Rabsch, N. K. Broeker, and S. Barbirz, Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens, BMC Microbiol, vol.16, 2016.

S. Barbirz, M. Becker, A. Freiberg, and R. Seckler, Phage Tailspike Proteins with ?-Solenoid Fold as Thermostable Carbohydrate Binding Materials, Macromol. Biosci, vol.9, pp.169-173, 2009.

A. Latka, B. Maciejewska, G. Majkowska-skrobek, Y. Briers, and Z. Drulis-kawa, Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process

, Appl. Microbiol. Biotechnol, vol.101, pp.3103-3119, 2017.

M. M. Binns, S. Vaughan, and K. N. Timmis, O-antigens are essential virulence factors of Shigella sonnei and Shigella dysenteriae 1, Zentralbl. Bakteriol. Mikrobiol. Hyg. B, vol.181, pp.197-205, 1985.

N. P. West, P. Sansonetti, J. Mounier, R. M. Exley, C. Parsot et al., Optimization of Virulence Functions Through Glucosylation of Shigella LPS, Science, vol.307, pp.1313-1317, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00368071

A. Freiberg, R. Morona, . Van-den, L. Bosch, C. Jung et al., The Tailspike Protein of Shigella Phage Sf6: A Structural Homolog of Salmonella Phage P22 Tailspike Protein without Sequence Similarity in the ?-helix Domain, J. Biol. Chem, vol.278, pp.1542-1548, 2003.

, Viruses, vol.10, pp.431-447, 2018.

Y. Kang, U. Gohlke, O. Engström, C. Hamark, T. Scheidt et al., Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions, J. Am. Chem. Soc, vol.138, pp.9109-9118, 2016.

J. J. Müller, S. Barbirz, K. Heinle, A. Freiberg, R. Seckler et al., An Intersubunit Active Site between Supercoiled Parallel ? Helices in the Trimeric Tailspike Endorhamnosidase of Shigella flexneri Phage Sf6, Structure, vol.16, pp.766-775, 2008.

P. Gemski, D. E. Koeltzow, and S. B. Formal, Phage conversion of Shigella flexneri group antigens, Infect. Immun, vol.11, pp.685-691, 1975.

A. A. Lindberg, R. Wollin, P. Gemski, and J. A. Wohlhieter, Interaction between bacteriophage Sf6 and Shigella Flexneri, J. Virol, vol.27, pp.38-44, 1978.

S. Casjens, D. A. Winn-stapley, E. B. Gilcrease, R. Morona, C. Kühlewein et al., The Chromosome of Shigella flexneri Bacteriophage Sf6: Complete Nucleotide Sequence, Genetic Mosaicism, and DNA Packaging, J. Mol. Biol, vol.339, pp.379-394, 2004.

J. E. Chua, P. A. Manning, and R. Morona, The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo-and endoglycanases, and C-5 epimerases, Microbiol. Read. Engl, vol.7, pp.1649-1659, 1999.

A. V. Perepelov, M. E. Shekht, B. Liu, S. D. Shevelev, V. A. Ledov et al., Shigella flexneri O-antigens revisited: Final elucidation of the O-acetylation profiles and a survey of the O-antigen structure diversity, FEMS Immunol. Med. Microbiol, vol.66, pp.201-210, 2012.

J. Wang, Y. A. Knirel, R. Lan, S. N. Senchenkova, X. Luo et al., Identification of an O-Acyltransferase Gene (OACB) That Mediates 3-and 4-O-Acetylation of Rhamnose III in Shigella flexneri O Antigens, J. Bacteriol, vol.196, pp.1525-1531, 2014.

C. Gauthier, P. Chassagne, F. Theillet, C. Guerreiro, F. Thouron et al., Non-stoichiometric O-acetylation of Shigella flexneri 2a O-specific polysaccharide: Synthesis and antigenicity, Org. Biomol. Chem, vol.12, pp.4218-4232, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01172002

C. A. Clark, J. Beltrame, and P. A. Manning, The OAC gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6, Gene, vol.107, pp.43-52, 1991.

J. Chang, P. Weigele, J. King, W. Chiu, W. Jiang et al., Asymmetric Reconstruction of Bacteriophage P22 Reveals Organization of its DNA Packaging and Infecting Machinery, Structure, vol.14, pp.1073-1082, 2006.

A. Varki, R. D. Cummings, M. Aebi, N. H. Packer, P. H. Seeberger et al., Symbol Nomenclature for Graphical Representations of Glycans, Glycobiology, vol.25, pp.1323-1324, 2015.

Y. A. Knirel, Q. Sun, S. N. Senchenkova, A. V. Perepelov, A. S. Shashkov et al., O-Antigen modifications providing antigenic diversity of Shigella flexneri and underlying genetic mechanisms, Biochem. Mosc, vol.80, pp.901-914, 2015.

F. Bélot, C. Guerreiro, F. Baleux, and L. A. Mulard, Synthesis of Two Linear PADRE Conjugates Bearing a Deca-or Pentadecasaccharide B Epitope as Potential Synthetic Vaccines against Shigella flexneri Serotype 2a Infection, Chem. Eur. J, vol.11, pp.1625-1635, 2005.

D. Andres, U. Gohlke, N. K. Broeker, S. Schulze, W. Rabsch et al., An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers, Glycobiology, vol.23, pp.486-494, 2013.

M. V. Zaccheus, N. K. Broeker, M. Lundborg, C. Uetrecht, S. Barbirz et al., Structural studies of the O-antigen polysaccharide from Escherichia coli TD2158 having O18 serogroup specificity and aspects of its interaction with the tailspike endoglycosidase of the infecting bacteriophage HK620, Carbohydr. Res, vol.357, pp.118-125, 2012.

, Viruses, vol.10, pp.431-448, 2018.

V. E. Ferrero, G. Di-nardo, G. Catucci, S. J. Sadeghi, and G. Gilardi, Fluorescence detection of ligand binding to labeled cytochrome P450BM3, Dalton Trans, vol.41, 2012.

U. Baxa, S. Steinbacher, S. Miller, A. Weintraub, R. Huber et al., Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide, Biophys. J, vol.71, pp.2040-2048, 1996.

Y. Li, B. Cao, B. Liu, D. Liu, Q. Gao et al., Molecular detection of all 34 distinct O-antigen forms of Shigella, J. Med. Microbiol, vol.58, pp.69-81, 2009.

A. N. Kondakova, E. V. Vinogradov, M. E. Shekht, A. A. Markina, B. Lindner et al., Structure of the oligosaccharide region (core) of the lipopolysaccharides of Shigella flexneri types 2a and 5b, Russ. J. Bioorg. Chem, vol.36, pp.396-399, 2010.

E. Mann, O. G. Ovchinnikova, J. D. King, and C. Whitfield, Bacteriophage-mediated Glucosylation Can Modify Lipopolysaccharide O-Antigens Synthesized by an ATP-binding Cassette (ABC) Transporter-dependent Assembly Mechanism, J. Biol. Chem, vol.290, pp.25561-25570, 2015.

P. G. Gettins, B. Fan, B. C. Crews, I. V. Turko, S. T. Olson et al., Transmission of conformational change from the heparin binding site to the reactive center of antithrombin, Biochemistry, vol.32, pp.8385-8389, 1993.

D. A. Simmons and E. Romanowska, Structure and biology of Shigella flexneri O antigens, J. Med. Microbiol, vol.23, pp.289-302, 1987.

M. W. Van-der-woude, Phase variation: How to create and coordinate population diversity, Curr. Opin. Microbiol, vol.14, pp.205-211, 2011.

K. N. Parent, M. L. Erb, G. Cardone, K. Nguyen, E. B. Gilcrease et al., OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella, Mol. Microbiol, vol.92, pp.47-60, 2014.

N. B. Porcek and K. N. Parent, Key Residues of S. flexneri OmpA Mediate Infection by Bacteriophage Sf6, J. Mol. Biol, vol.427, 1964.

Y. Kang, S. Barbirz, R. Lipowsky, and M. Santer, Conformational Diversity of O-Antigen Polysaccharides of the Gram-Negative Bacterium Shigella flexneri Serotype Y, J. Phys. Chem. B, vol.118, pp.2523-2534, 2014.

N. Broeker, F. Kiele, S. Casjens, E. Gilcrease, A. Thalhammer et al., Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620. Viruses, vol.10, p.289, 2018.

C. G. Leon-velarde, L. Happonen, M. Pajunen, K. Leskinen, A. M. Kropinski et al., Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ?R1-RT Is Dependent on Temperature

, Appl. Environ. Microbiol, vol.82, pp.5340-5353, 2016.

N. I. Carlin, T. Wehler, and A. A. Lindberg, Shigella flexneri O-Antigen Epitopes: Chemical and Immunochemical Analyses Reveal That Epitopes of Type III and Group 6 Antigens Are Identical, Infect. Immun, vol.53, pp.110-115, 1986.

B. Vulliez-le-normand, F. A. Saul, A. Phalipon, F. Belot, C. Guerreiro et al., Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody, Proc. Natl. Acad. Sci, vol.105, pp.9976-9981, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00336029

N. K. Vyas, M. N. Vyas, M. C. Chervenak, M. A. Johnson, B. M. Pinto et al., Molecular Recognition of Oligosaccharide Epitopes by a Monoclonal Fab Specific for Shigella flexneri Y Lipopolysaccharide: X-ray Structures and Thermodynamics, Biochemistry, vol.41, pp.13575-13586, 2002.

F. Theillet, P. Chassagne, M. Delepierre, A. Phalipon, and L. A. Mulard, Multidisciplinary Approaches to Study O-Antigen: Antibody Recognition in Support of the Development of Synthetic Carbohydrate-Based Enteric Vaccines, Anticarbohydrate Antibodies, pp.1-36, 2012.

A. Phalipon, M. Tanguy, C. Grandjean, C. Guerreiro, F. Bélot et al., A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate against Shigella flexneri 2a Infection, J. Immunol, vol.182, pp.2241-2247, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414256

, Viruses, vol.10, pp.431-449, 2018.

R. M. Van-der-put, T. H. Kim, C. Guerreiro, F. Thouron, P. Hoogerhout et al., A Synthetic Carbohydrate Conjugate Vaccine Candidate against Shigellosis: Improved Bioconjugation and Impact of Alum on Immunogenicity, Bioconjug. Chem, vol.27, pp.883-892, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01350027

F. Micoli, M. R. Romano, M. Tontini, E. Cappelletti, M. Gavini et al., Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X, Proc. Natl. Acad. Sci, vol.110, 2013.

M. M. Kämpf, M. Braun, D. Sirena, J. Ihssen, L. Thöny-meyer et al., In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: Identification of stimulating factors for in vivo glycosylation, Microb. Cell Factories, vol.14, 2015.

K. Niebuhr, N. Jouihri, A. Allaoui, P. Gounon, P. J. Sansonetti et al., IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation, Mol. Microbiol, vol.38, pp.8-19, 2000.

C. Parsot and P. J. Sansonetti, Invasion and the pathogenesis of Shigella infections, Curr. Top. Microbiol. Immunol, vol.209, pp.25-42, 1996.

M. J. Van-den-beld, A. W. Friedrich, E. Van-zanten, F. A. Reubsaet, M. A. Kooistra-smid et al., Multicenter evaluation of molecular and culture-dependent diagnostics for Shigella species and Entero-invasive Escherichia coli in the Netherlands, J. Microbiol. Methods, vol.131, pp.10-15, 2016.

M. Loferer-krößbacher, J. Klima, and R. Psenner, Determination of Bacterial Cell Dry Mass by Transmission Electron Microscopy and Densitometric Image Analysis, Appl. Environ. Microbiol, vol.64, pp.688-694, 1998.

R. P. Darveau and R. E. Hancock, Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains, J. Bacteriol, vol.155, pp.831-838, 1983.

S. Schoonbroodt, M. Steukers, M. Viswanathan, N. Frans, M. Timmermans et al., Engineering Antibody Heavy Chain CDR3 to Create a Phage Display Fab Library Rich in Antibodies That Bind Charged Carbohydrates, J. Immunol, vol.181, pp.6213-6221, 2008.

N. Malou, T. Tran, C. Nappez, M. Signoli, C. L. Forestier et al., Immuno-PCR-A New Tool for Paleomicrobiology: The Plague Paradigm, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01060544