, across M cells. Microb. Pathog, vol.41, pp.241-250

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, vol.304, pp.242-248, 2004.

R. E. Dawes-hoang, K. M. Parmar, A. E. Christiansen, C. B. Phelps, A. H. Brand et al., Folded gastrulation, cell shape change and the control of myosin localization, Development, vol.132, pp.4165-4178, 2005.

M. J. De-brabander, R. M. Van-de-veire, F. E. Aerts, M. Borgers, and P. A. Janssen, The effects of methyl (5-(2-thienylcarbonyl)1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro, Cancer Res, vol.36, pp.905-916, 1976.

O. Disson, S. Grayo, E. Huillet, G. Nikitas, F. Langa-vives et al., Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.455, pp.1114-1118, 2008.

O. Disson, G. Nikitas, S. Grayo, O. Dussurget, P. Cossart et al., Modeling human listeriosis in natural and genetically engineered animals, Nat. Protoc, vol.4, pp.799-810, 2009.

J. Fischer, P. J. Klein, M. Vierbuchen, B. Skutta, G. Uhlenbruck et al., Characterization of glycoconjugates of human gastrointestinal mucosa by lectins. I. Histochemical distribution of lectin binding sites in normal alimentary tract as well as in benign and malignant gastric neoplasms, J. Histochem. Cytochem, vol.32, pp.681-689, 1984.

G. Portillo, F. , and B. B. Finlay, Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors, J. Cell Biol, vol.129, pp.81-97, 1995.

E. Gouin, M. Adib-conquy, D. Balestrino, M. A. Nahori, V. Villiers et al., The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IkappaB kinase subunit IKKalpha, Proc. Natl. Acad. Sci. USA, vol.107, pp.17333-17338, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901815

C. C. Grant, M. E. Konkel, W. Cieplak, and L. S. Tompkins, Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures, Infect. Immun, vol.61, pp.1764-1771, 1993.

S. J. Hagen and J. S. Trier, Immunocytochemical localization of actin in epithelial cells of rat small intestine by light and electron microscopy, J. Histochem. Cytochem, vol.36, pp.717-727, 1988.

R. Henry, L. Shaughnessy, M. J. Loessner, C. Alberti-segui, D. E. Higgins et al., Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cell. Microbiol, vol.8, pp.107-119, 2006.

T. Hirose, Y. Izumi, Y. Nagashima, Y. Tamai-nagai, H. Kurihara et al., Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation, J. Cell Sci, vol.115, pp.2485-2495, 2002.

L. Hu, B. D. Tall, S. K. Curtis, and D. J. Kopecko, Enhanced microscopic definition of Campylobacter jejuni 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells, Infect. Immun, vol.76, pp.5294-5304, 2008.

B. E. Hull and L. A. Staehelin, Functional significance of the variations in the geometrical organization of tight junction networks, J. Cell Biol, vol.68, pp.688-704, 1976.

Y. Izumi, T. Hirose, Y. Tamai, S. Hirai, Y. Nagashima et al., An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, 1998.

, J. Cell Biol, vol.143, pp.95-106

R. Jahn and R. H. Scheller, SNAREs-engines for membrane fusion, Nat. Rev. Mol. Cell Biol, vol.7, pp.631-643, 2006.

, GC-specific markers ITF and Muc-2. Fig. S3 shows additional pictures of GC disorganized TJs. Fig. S4 shows the characterization of non-GC sub

N. A. Ameen, C. Marino, and P. J. Salas, cAMP-dependent exocytosis and vesicle traffic regulate CFTR and fluid transport in rat jejunum in vivo, Am. J. Physiol. Cell Physiol, vol.284, pp.429-438, 2003.

P. L. Appleton, A. J. Quyn, S. Swift, and I. Näthke, Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy, J. Microsc, vol.234, pp.196-204, 2009.

B. Arunachalam, U. T. Phan, H. J. Geuze, and P. Cresswell, Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gammainterferon-inducible lysosomal thiol reductase (GILT), Proc. Natl. Acad. Sci. USA, vol.97, pp.745-750, 2000.

D. J. Bacon, C. M. Szymanski, D. H. Burr, R. P. Silver, R. A. Alm et al., A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176, Mol. Microbiol, vol.40, pp.769-777, 2001.

N. T. Baker and L. L. Graham, Campylobacter fetus translocation across Caco-2 cell monolayers, Microb. Pathog, vol.49, pp.260-272, 2010.

K. Boller, D. Vestweber, and R. Kemler, Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells, J. Cell Biol, vol.100, pp.327-332, 1985.

I. G. Boneca, O. Dussurget, D. Cabanes, M. A. Nahori, S. Sousa et al., A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system, Proc. Natl. Acad. Sci. USA, vol.104, pp.997-1002, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00139188

J. L. Burns, A. Griffith, J. J. Barry, M. Jonas, and E. Y. Chi, Transcytosis of gastrointestinal epithelial cells by Escherichia coli K1, Pediatr. Res, vol.49, pp.30-37, 2001.

M. Cavey, M. Rauzi, P. F. Lenne, and T. Lecuit, A two-tiered mechanism for stabilization and immobilization of E-cadherin, Nature, vol.453, pp.751-756, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428936

S. Chiba, T. Nagai, T. Hayashi, Y. Baba, S. Nagai et al., Listerial invasion protein internalin B promotes entry into ileal Peyer's patches in vivo, Microbiol. Immunol, vol.55, pp.123-129, 2011.

P. C. Colony and R. D. Specian, Endocytosis and vesicular traffic in fetal and adult colonic goblet cells, Anat. Rec, vol.218, pp.365-372, 1987.

S. Corr, C. Hill, and C. G. Gahan, An in vitro cell-culture model demonstrates internalin-and hemolysin-independent translocation of Listeria 2276 Listeria target mucus-producing goblet cells, 2006.

, L. monocytogenes into epithelial cells. Cell, vol.84, pp.923-932

A. J. Merz and M. So, Interactions of pathogenic Neisseriae with epithelial cell membranes, Annu. Rev. Cell Dev. Biol, vol.16, pp.423-457, 2000.

K. Moro, T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells, Nature, vol.463, pp.540-544, 2010.

K. E. Mostov, M. Friedlander, and G. Blobel, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulinlike domains, Nature, vol.308, pp.37-43, 1984.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, pp.593-605, 2007.

J. T. Myers, A. W. Tsang, and J. A. Swanson, Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages, J. Immunol, vol.171, pp.5447-5453, 2003.

D. R. Neill, S. H. Wong, A. Bellosi, R. J. Flynn, M. Daly et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, vol.464, pp.1367-1370, 2010.

S. Ohno, Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity, Curr. Opin. Cell Biol, vol.13, pp.264-271, 2001.

M. G. Oliver and R. D. Specian, Cytoskeleton of intestinal goblet cells: role of actin filaments in baseline secretion, Am. J. Physiol, vol.259, pp.991-997, 1990.

C. H. Olsen, Review of the use of statistics in infection and immunity, Infect. Immun, vol.71, pp.6689-6692, 2003.

M. Pentecost, G. Otto, J. A. Theriot, and M. R. Amieva, Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion, PLoS Pathog, vol.2, p.3, 2006.

M. Pentecost, J. Kumaran, P. Ghosh, and M. R. Amieva, Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion, PLoS Pathog, vol.6, p.1000900, 2010.

N. Personnic, S. Bruck, M. A. Nahori, A. Toledo-arana, G. Nikitas et al., The stressinduced virulence protein InlH controls interleukin-6 production during murine listeriosis, Infect. Immun, vol.78, pp.1979-1989, 2010.

M. Porvaznik, W. Baker, and R. I. Walker, Disruption of the goblet cell intercellular junction following histamine infusion of the rabbit ileum, Experientia, vol.39, pp.514-518, 1983.

R. Poulsom and N. A. Wright, Trefoil peptides: a newly recognized family of epithelial mucin-associated molecules, Am. J. Physiol, vol.265, pp.205-213, 1993.

B. Pron, C. Boumaila, F. Jaubert, S. Sarnacki, J. P. Monnet et al., Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system, Infect. Immun, vol.66, pp.747-755, 1998.

R. B. Ravelli, B. Gigant, P. A. Curmi, I. Jourdain, S. Lachkar et al., Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain, Nature, vol.428, pp.198-202, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02119485

R. G. Russell and D. C. Blake, Cell association and invasion of Caco-2 cells by Campylobacter jejuni, Infect. Immun, vol.62, pp.3773-3779, 1994.

P. B. Schiff and S. B. Horwitz, Taxol stabilizes microtubules in mouse fibroblast cells, Proc. Natl. Acad. Sci. USA, vol.77, pp.1561-1565, 1980.

N. J. Schill and R. A. Anderson, Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis, Biochem. J, vol.418, pp.247-260, 2009.

R. Singh, A. Jamieson, and P. Cresswell, GILT is a critical host factor for Listeria monocytogenes infection, Nature, vol.455, pp.1244-1247, 2008.

M. H. Jang, M. N. Kweon, K. Iwatani, M. Yamamoto, K. Terahara et al., Intestinal villous M cells: an antigen entry site in the mucosal epithelium, Proc. Natl. Acad. Sci. USA, vol.101, pp.6110-6115, 2004.

C. S. Kaetzel, Polymeric Ig receptor: defender of the fort or Trojan horse?, Curr. Biol, vol.11, pp.41-46, 2001.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2, Science, vol.68, pp.384-386, 1992.

D. J. Kopecko, L. Hu, and K. J. , Campylobacter jejuni-microtubule-dependent invasion, Trends Microbiol, vol.9, pp.389-396, 2001.

K. Kuespert, S. Pils, and C. R. Hauck, CEACAMs: their role in physiology and pathophysiology, Curr. Opin. Cell Biol, vol.18, pp.565-571, 2006.

M. Lecuit, S. Dramsi, C. Gottardi, M. Fedor-chaiken, B. Gumbiner et al., A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes, EMBO J, vol.18, pp.3956-3963, 1999.

M. Lecuit, S. Vandormael-pournin, J. Lefort, M. Huerre, P. Gounon et al., A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier, Science, vol.292, pp.1722-1725, 2001.

M. Lecuit, J. L. Sonnenburg, P. Cossart, and J. I. Gordon, Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model, J. Biol. Chem, vol.282, pp.15065-15072, 2007.

J. C. Lee, D. J. Field, and L. L. Lee, Effects of nocodazole on structures of calf brain tubulin, Biochemistry, vol.19, pp.6209-6215, 1980.

S. K. Lindén, H. Bierne, C. Sabet, C. W. Png, T. H. Florin et al., Listeria monocytogenes internalins bind to the human intestinal mucin MUC2, Arch. Microbiol, vol.190, pp.101-104, 2008.

J. L. Madara, Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions, J. Membr. Biol, vol.116, pp.177-184, 1990.

J. L. Madara and J. S. Trier, Structure and permeability of goblet cell tight junctions in rat small intestine, J. Membr. Biol, vol.66, pp.145-157, 1982.

J. L. Madara, J. S. Trier, and M. R. Neutra, Structural changes in the plasma membrane accompanying differentiation of epithelial cells in human and monkey small intestine, Gastroenterology, vol.78, pp.963-975, 1980.

S. Makino, J. P. Van-putten, and T. F. Meyer, Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells, EMBO J, vol.10, pp.1307-1315, 1991.

A. M. Marchiando, L. Shen, W. V. Graham, K. L. Edelblum, C. A. Duckworth et al., The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding, Gastroenterology, vol.140, pp.1208-1218, 2011.

K. Matsushita, C. N. Morrell, B. Cambien, S. X. Yang, M. Yamakuchi et al., Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimidesensitive factor, Cell, vol.115, issue.03, pp.803-804, 2003.

K. Matsushita, C. N. Morrell, and C. J. Lowenstein, A novel class of fusion polypeptides inhibits exocytosis, Mol. Pharmacol, vol.67, pp.1137-1144, 2005.

J. Mengaud, H. Ohayon, P. Gounon, R. Mege, and P. Cossart, E-cadherin is the receptor for internalin, a surface protein required for entry JEM, vol.208, 1996.

, Ar ticle 2277

S. Sousa, M. Lecuit, and P. Cossart, Microbial strategies to target, cross or disrupt epithelia, Curr. Opin. Cell Biol, vol.17, pp.489-498, 2005.

T. C. Sutherland, P. Quattroni, R. M. Exley, and C. M. Tang, Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium, Infect. Immun, vol.78, pp.3832-3847, 2010.

L. G. Tilney, D. J. Derosier, and M. S. Tilney, How Listeria exploits host cell actin to form its own cytoskeleton. I. Formation of a tail and how that tail might be involved in movement, J. Cell Biol, vol.118, pp.71-81, 1992.

B. J. Van-klinken, A. W. Einerhand, L. A. Duits, M. K. Makkink, K. M. Tytgat et al., Gastrointestinal expression and partial cDNA cloning of murine Muc2, Am. J. Physiol, vol.276, pp.115-124, 1999.

J. A. Wang, T. F. Meyer, and T. Rudel, Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells, Int. J. Med. Microbiol, vol.298, pp.209-221, 2008.

R. O. Watson and J. E. Galán, Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes, PLoS Pathog, vol.4, p.14, 2008.

Y. Xie, K. J. Kim, and K. S. Kim, Current concepts on Escherichia coli K1 translocation of the blood-brain barrier, FEMS Immunol. Med. Microbiol, vol.42, pp.271-279, 2004.

J. R. Zhang, K. E. Mostov, M. E. Lamm, M. Nanno, S. Shimida et al., The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells, Cell, vol.102, pp.827-837, 2000.

. Nikitas,

S. Figure, Frozen 7-?m-thick sections from small intestine of WT (a and c) and iFABP-hEcad transgenic mice (b and d) were stained for hEcad (a and b), mEcad (c and d), and nuclei (blue). (a and b) Note that the green signal detected in the lamina propria corresponds to endogenous mouse immunoglobulins stained by the secondary anti-mouse antibody. (B) Accessible (acc) mEcad is detected in WT mice. Optical section of intestinal villus stained for mEcad before (red) and after tissue permeabilization (green). (right) Separated channels and merge of the boxed region, showing accessible mEcad-expressing cells. (C) Accessible mEcad is detected in WT mice similarly to iFABP-hEcad transgenic mice around GCs. Stack projection of nonpermeabilized intestinal villi of WT (top) and iFABP-hEcad transgenic mouse (bottom) stained with WGA and for accessible mEcad, Ecad accessibility is an intrinsic property of intestinal villus epithelium. (A)

, This video is related to Fig. 1 B. Ligated intestinal loops were infected by Lm for 30 min, fi xed, and stained for total hEcad (red) and Lm (green) after permeabilization. Images of whole mount tissue were acquired as a z stack by two-photon microscopy and assembled as a three, vol.2

, This video is related to Fig. 2. Whole mount intestinal tissue was stained before permeabilization with WGA (white) and for accessible hEcad (green) and after permeabilization for nuclei (blue). Villus is oriented with the villus tip facing the viewer

, This video is related to Figs. 2 and 3. Whole mount tissue was stained as described for Video 3. The video shows one GC surrounded by accessible Ecad (green) and expelling its mucus content (white). Images were acquired and assembled as described for Video 3

, This video is related to Fig. 3 B. Whole mount intestinal tissue was stained for occludin (red) and with WGA (white). The video shows one GC with its mucus content presenting more occludin at the junctional complex compared with its neighboring cells, Redistribution of occludin around GCs

, This video is related to Fig. 3 C. Whole mount intestinal tissue was stained for PAR-3 (red) and with WGA (white). The video shows GCs (white) with depolarized PAR-3 while PAR-3 is accumulated at the junctional complexes on enterocytes

, This video is related to Fig. 3 C. Whole mount intestinal tissue was stained for PKC , and images were acquired and assembled as described for Video 3

, This video is related to Fig. S4. A vibratome section of an intestinal villus was stained before permeabilization for accessible hEcad (green) and after permeabilization for ZO-1 (red) and nuclei (blue). The video shows a gap after cell extrusion surrounded by accessible Ecad on the lateral side of an intestinal villus, vol.8