, Diagnostic and Statistical Manual of Mental Disorders (DSM), 4th Edn, 2000.

F. Amzica, . Lopes-da, and F. H. Silva, Cellular Substrates of Brain Rhythms, Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 6th Edn, pp.33-63, 2012.

E. Barzegaran and M. G. Knyazeva, Functional connectivity analysis in EEG source space: the choice of method, PLoS One, vol.12, p.181105, 2017.

O. M. Bazanova and D. Vernon, Interpreting EEG alpha activity, Neurosci. Biobehav. Rev, vol.44, 2014.

R. A. Bethlehem, J. Seidlitz, R. Romero-garcia, and M. V. Lombardo, Using normative age modelling to isolate subsets of individuals with autism expressing highly age-atypical cortical thickness features. bioRxiv, 2018.

N. Bigdely-shamlo, T. Mullen, C. Kothe, K. Su, and K. A. Robbins, The PREP pipeline: standardized preprocessing for large-scale EEG analysis, Front. Neuroinform, vol.9, p.16, 2015.

W. Bosl, A. Tierney, H. Tager-flusberg, N. , and C. , EEG complexity as a biomarker for autism spectrum disorder risk, BMC Med, vol.9, p.18, 2011.

R. L. Buckner, D. Head, J. Parker, A. F. Fotenos, D. Marcus et al., A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume, Neuroimage, vol.23, pp.724-738, 2004.

N. A. Busch, J. Dubois, and R. Vanrullen, The phase of ongoing EEG oscillations predicts visual perception, J. Neurosci, vol.29, pp.7869-7876, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00402080

K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint et al., Power failure: why small sample size undermines the reliability of neuroscience, Nat. Rev. Neurosci, vol.14, pp.365-376, 2013.

G. Buzsáki, C. A. Anastassiou, and C. Koch, The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci, vol.13, pp.407-420, 2012.

D. S. Cantor, R. W. Thatcher, M. Hrybyk, K. , and H. , Computerized EEG analyses of autistic children, J. Autism Dev. Disord, vol.16, pp.169-187, 1986.

F. Castelli, C. Frith, F. Happé, and U. Frith, Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes, Brain J. Neurol, vol.125, pp.1839-1849, 2002.

A. S. Chan and W. W. Leung, differentiating autistic children with quantitative encephalography: a 3-month longitudinal study, J. Child Neurol, vol.21, pp.392-399, 2006.

T. Charman, E. Loth, J. Tillmann, D. Crawley, C. Wooldridge et al., The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation, Mol. Autism, vol.8, p.27, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01967230

W. S. Cleveland, Robust locally weighted regression and smoothing scatterplots, J. Am. Stat. Assoc, vol.74, pp.829-836, 1979.

W. S. Cleveland and S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, J. Am. Stat. Assoc, vol.83, pp.596-610, 1988.

A. G. Collins and M. J. Frank, Within-and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory, Proc. Natl. Acad. Sci. U.S.A, vol.115, 2018.

L. Cornew, T. P. Roberts, L. Blaskey, E. , and J. C. , Resting-state oscillatory activity in autism spectrum disorders, J. Autism Dev. Disord, vol.42, pp.1884-1894, 2012.

E. Courchesne, P. , and K. , Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection, Curr. Opin. Neurobiol, vol.15, pp.225-230, 2005.

R. W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages, Comput. Biomed. Res, vol.29, pp.162-173, 1996.

A. Crippa, G. Del-vecchio, S. Busti-ceccarelli, M. Nobile, F. Arrigoni et al., Cortico-cerebellar connectivity in autism spectrum disorder: what do we know so far? Front, Psychiatry, vol.7, p.20, 2016.

G. Dawson, L. G. Klinger, H. Panagiotides, A. Lewy, and P. Castelloe, Subgroups of autistic children based on social behavior display distinct patterns of brain activity, J. Abnorm. Child Psychol, vol.23, pp.569-583, 1995.

A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, vol.134, pp.9-21, 2004.

D. Martino, A. Yan, C. Li, Q. Denio, E. Castellanos et al., The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism, Mol. Psychiatry, vol.19, pp.659-667, 2013.

A. Dickinson, C. Distefano, D. Senturk, J. , and S. S. , Peak alpha frequency is a neural marker of cognitive function across the autism spectrum, Eur. J. Neurosci, vol.47, pp.643-651, 2017.

J. Duann and F. Hatz, Lab_Read_edf. Available, 2012.

G. Dumas, J. Laroche, and A. Lehmann, Your body, my body, our coupling moves our bodies, Front. Hum. Neurosci, vol.8, p.1004, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01120655

G. Dumas, R. Soussignan, L. Hugueville, J. Martinerie, and J. Nadel, Revisiting mu suppression in autism spectrum disorder, Brain Res, vol.1585, pp.108-119, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211073

G. Dumas, J. Nadel, R. Soussignan, J. Martinerie, and L. Garnero, Interbrain synchronization during social interaction, PLoS One, vol.5, p.12166, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00679917

R. E. Dustman, D. E. Shearer, and R. Y. Emmerson, Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency, Clin. Neurophysiol, vol.110, pp.1399-1409, 1999.

J. C. Edgar, K. Heiken, Y. Chen, J. D. Herrington, V. Chow et al., Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume, J. Autism Dev. Disord, vol.45, pp.795-804, 2015.

D. A. Engemann, G. , and A. , Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, Neuroimage, vol.108, pp.328-342, 2015.

H. Gastaut, Electrocorticographic study of the reactivity of rolandic rhythm, Rev. Neurol, vol.87, pp.176-182, 1952.

C. Gillberg, The ESSENCE in child psychiatry: early symptomatic syndromes eliciting neurodevelopmental clinical examinations, Res. Dev. Disabil, vol.31, pp.1543-1551, 2010.

T. Glatard, L. B. Lewis, R. Ferreira-da-silva, R. Adalat, N. Beck et al., Reproducibility of neuroimaging analyses across operating systems, Front. Neuroinform, vol.9, p.12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207394

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MEG and EEG data analysis with MNE-python, Front. Neurosci, vol.7, p.267, 2013.

E. H. Gronenschild, P. Habets, H. I. Jacobs, R. Mengelers, N. Rozendaal et al., The effects of freesurfer version, workstation type, and macintosh operating system version on anatomical volume and cortical thickness measurements, PLoS One, vol.7, p.38234, 2012.

A. Hahamy, M. Behrmann, and R. Malach, The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder, Nat. Neurosci, vol.18, pp.302-309, 2015.

N. A. Herweg, T. Apitz, G. Leicht, C. Mulert, L. Fuentemilla et al., Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: evidence from simultaneous EEG-fMRI, J. Neurosci, vol.36, pp.3579-3587, 2016.

H. M. Hobson and D. V. Bishop, Mu suppression-A good measure of the human mirror neuron system?, Cortex, vol.82, pp.290-310, 2016.

H. M. Hobson and D. V. Bishop, The interpretation of mu suppression as an index of mirror neuron activity: past, present and future, R. Soc. Open Sci, vol.4, p.160662, 2017.

G. Huguet, E. Ey, and T. Bourgeron, The genetic landscapes of autism spectrum disorders, Annu. Rev. Genomics Hum. Genet, vol.14, pp.191-213, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01470293

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images, Neuroimage, vol.17, pp.825-841, 2002.

O. Jensen and A. Mazaheri, Shaping functional architecture by oscillatory alpha activity: gating by inhibition, Front. Hum. Neurosci, vol.4, p.186, 2010.

S. S. Jeste, J. Frohlich, and S. K. Loo, Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders, Curr. Opin. Neurol, vol.28, pp.110-116, 2015.

M. Jung, Y. Tu, C. A. Lang, A. Ortiz, J. Park et al., Decreased structural connectivity and resting-state brain activity in the lateral occipital cortex is associated with social communication deficits in boys with autism spectrum disorder, Neuroimage, 2017.

M. A. Just, V. L. Cherkassky, T. A. Keller, and N. J. Minshew, Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity, Brain J. Neurol, vol.127, pp.1811-1821, 2004.

B. Keehn, M. Westerfield, R. Müller, T. , and J. , Autism, attention, and alpha oscillations: an electrophysiological study of attentional capture, Biol. Psychiatry Cogn. Neurosci. Neuroimaging, vol.2, pp.528-536, 2017.

J. A. Kelso, G. Dumas, and E. Tognoli, Outline of a general theory of behavior and brain coordination, Neural Netw. Off. J. Int. Neural Netw. Soc, vol.37, pp.120-131, 2013.

S. Khan, A. Gramfort, N. R. Shetty, M. G. Kitzbichler, S. Ganesan et al., Local and long-range functional connectivity is reduced in concert in autism spectrum disorders, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.3107-3112, 2013.
DOI : 10.1073/pnas.1214533110

URL : http://www.pnas.org/content/110/8/3107.full.pdf

Y. Kim, J. Poline, and G. Dumas, Experimenting with reproducibility: a case study of robustness in bioinformatics, Gigascience, vol.7, p.77, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02066542

M. G. Kitzbichler, S. Khan, S. Ganesana, M. Vangel, M. Herbert et al., Altered development and multifaceted band-specific abnormalities of resting state networks in autism, Biol. Psychiatry, vol.77, pp.794-804, 2015.

W. Klimesch, M. Doppelmayr, H. Russegger, T. Pachinger, and J. Schwaiger, Induced alpha band power changes in the human EEG and attention, Neurosci. Lett, vol.244, pp.73-76, 1998.

W. Klimesch, P. Sauseng, and S. Hanslmayr, EEG alpha oscillations: the inhibition-timing hypothesis, Brain Res. Rev, vol.53, pp.63-88, 2007.
DOI : 10.1016/j.brainresrev.2006.06.003

N. Kriegeskorte, W. K. Simmons, P. S. Bellgowan, and C. I. Baker, Circular analysis in systems neuroscience: the dangers of double dipping, Nat. Neurosci, vol.12, pp.535-540, 2009.

A. Lefebvre, A. Beggiato, T. Bourgeron, and R. Toro, Neuroanatomical diversity of corpus callosum and brain volume in autism: meta-analysis, analysis of the autism brain imaging data exchange project, and simulation, Biol. Psychiatry, vol.78, pp.126-134, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01579758

R. K. Lenroot and J. N. Giedd, Brain development in children and adolescents: insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev, vol.30, pp.718-729, 2006.
DOI : 10.1016/j.neubiorev.2006.06.001

C. Lord, S. Risi, L. Lambrecht, E. H. Cook, B. L. Leventhal et al., The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism, J. Autism Dev. Disord, vol.30, pp.205-223, 2000.

C. Lord, M. Rutter, L. Couteur, and A. , Autism diagnostic interviewrevised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders, J. Autism Dev. Disord, vol.24, pp.659-685, 1994.

E. Loth, W. Spooren, L. M. Ham, M. B. Isaac, C. Auriche-benichou et al., Identification and validation of biomarkers for autism spectrum disorders, Nat. Rev. Drug Discov, vol.15, pp.70-73, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01578120

C. Machado, R. Rodríguez, M. Estévez, G. Leisman, R. Melillo et al., Anatomic and functional connectivity relationship in autistic children during three different experimental conditions, Brain Connect, vol.5, pp.487-496, 2015.
DOI : 10.1089/brain.2014.0335

A. F. Marquand, I. Rezek, J. Buitelaar, and C. F. Beckmann, Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies, Biol. Psychiatry, vol.80, pp.552-561, 2016.
DOI : 10.1016/j.biopsych.2015.12.023

URL : https://doi.org/10.1016/j.biopsych.2015.12.023

P. J. Marshall, Y. Bar-haim, and N. A. Fox, Development of the EEG from 5 months to 4 years of age, Clin. Neurophysiol, vol.113, pp.1199-1208, 2002.

K. J. Mathewson, M. K. Jetha, I. E. Drmic, S. E. Bryson, J. O. Goldberg et al., Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder, Clin. Neurophysiol, vol.123, pp.1798-1809, 2012.
DOI : 10.1016/j.clinph.2012.02.061

M. Matousek, P. , and I. , Frequency analysis of EEG registrations in normal children 1-16 years old, Nord. Med, vol.85, pp.637-638, 1971.

I. Mohammad-rezazadeh, J. Frohlich, S. K. Loo, J. , and S. S. , Brain connectivity in autism spectrum disorder, Curr. Opin. Neurol, vol.29, pp.137-147, 2016.

M. Murias, S. J. Webb, J. Greenson, D. , and G. , Resting state cortical connectivity reflected in eeg coherence in individuals with autism, Biol. Psychiatry, vol.62, pp.270-273, 2007.

L. M. Oberman, E. M. Hubbard, J. P. Mccleery, E. L. Altschuler, V. S. Ramachandran et al., EEG evidence for mirror neuron dysfunction in autism spectrum disorders, Cogn. Brain Res, vol.24, pp.190-198, 2005.

T. Ogawa, A. Sugiyama, S. Ishiwa, M. Suzuki, T. Ishihara et al., Ontogenic development of EEG-asymmetry in early infantile autism, Brain Dev, vol.4, pp.439-449, 1982.

S. Palva and J. M. Palva, Functional roles of alpha-band phase synchronization in local and large-scale cortical networks, Front. Psychol, vol.2, p.204, 2011.

I. Petersén and O. Eeg-olofsson, The development of the electroencephalogram in normal children from the age of 1 through 15 years. Non-paroxysmal activity, Neuropadiatrie, vol.2, pp.247-304, 1971.

G. Pfurtscheller, C. Brunner, A. Schlögl, . Lopes-da, and F. H. Silva, Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks, Neuroimage, vol.31, pp.153-159, 2006.

G. Pfurtscheller, A. Stancák, and C. Neuper, Event-related synchronization (ERS) in the alpha band-an electrophysiological correlate of cortical idling: a review, Int. J. Psychophysiol, vol.24, pp.66-75, 1996.

M. E. Raichle, A. M. Macleod, A. Z. Snyder, W. J. Powers, D. A. Gusnard et al., A default mode of brain function, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.676-682, 2001.

G. Rizzolatti, L. Fogassi, and V. Gallese, Neurophysiological mechanisms underlying the understanding and imitation of action, Nat. Rev. Neurosci, vol.2, pp.661-670, 2001.

F. W. Sharbrough, G. E. Chatrian, L. Ronald, H. Luders, M. Nuwer et al., Guideline thirteen: guidelines for standard electrode position nomenclature, 1994.

, J. Clin. Neurophysiol, vol.11, pp.111-113

E. Shephard, C. Tye, K. L. Ashwood, B. Azadi, P. Asherson et al., Resting-state neurophysiological activity patterns in young people with ASD, ADHD, and ASD + ADHD, J. Autism Dev. Disord, vol.48, pp.110-122, 2018.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, Neuroimage, vol.23, pp.208-219, 2004.

S. M. Smith, N. , and T. E. , Statistical challenges in "big data" human neuroimaging, Neuron, vol.97, pp.263-268, 2018.

T. Takahashi, Complexity of spontaneous brain activity in mental disorders, Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.45, pp.258-266, 2013.

A. L. Tierney, L. Gabard-durnam, V. Vogel-farley, H. Tager-flusberg, N. et al., Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder, PLoS One, vol.7, p.39127, 2012.

E. Tognoli, J. Lagarde, G. C. Deguzman, and J. S. Kelso, The phi complex as a neuromarker of human social coordination, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.8190-8195, 2007.

R. Toro, M. Chupin, L. Garnero, G. Leonard, M. Perron et al., Brain volumes and Val66Met polymorphism of the BDNF gene: local or global effects?, Brain Struct. Funct, vol.213, pp.501-509, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00805413

C. Vidaurre, T. H. Sander, and A. Schlögl, BioSig: the free and open source software library for biomedical signal processing, Comput. Intell. Neurosci, p.935364, 2011.

J. Wang, J. Barstein, L. E. Ethridge, M. W. Mosconi, Y. Takarae et al., Resting state EEG abnormalities in autism spectrum disorders, J. Neurodev. Disord, vol.5, p.24, 2013.

S. Weng, J. L. Wiggins, S. J. Peltier, M. Carrasco, S. Risi et al., Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders, Brain Res, vol.1313, pp.202-214, 2010.

A. X. Ye, R. C. Leung, C. B. Schäfer, M. J. Taylor, and S. M. Doesburg, Atypical resting synchrony in autism spectrum disorder, Hum. Brain Mapp, vol.35, pp.6049-6066, 2014.

K. Zeng, J. Kang, G. Ouyang, J. Li, J. Han et al., Disrupted brain network in children with autism spectrum disorder, Sci. Rep, vol.7, p.16253, 2017.

Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm, IEEE Trans. Med. Imaging, vol.20, pp.45-57, 2001.

V. Zotev, M. Misaki, R. Phillips, C. K. Wong, and J. Bodurka, Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm, Hum. Brain Mapp, vol.39, pp.1024-1042, 2018.