A. B. Stergachis, S. Neph, A. Reynolds, R. Humbert, B. Miller et al., Developmental fate and cellular maturity encoded in human regulatory DNA landscapes, Cell, vol.154, pp.888-903, 2013.

S. Heinz, C. E. Romanoski, C. Benner, and C. K. Glass, The selection and function of cell type-specific enhancers, Nat. Rev. Mol. Cell Biol, vol.16, pp.144-154, 2015.

J. S. Becker, D. Nicetto, and K. S. Zaret, H3K9me3-dependent heterochromatin: barrier to cell fate changes, Trends Genet, vol.32, pp.29-41, 2016.

K. S. Zaret and S. E. Mango, Pioneer transcription factors, chromatin dynamics, and cell fate control, Curr. Opin. Genet. Dev, vol.37, pp.76-81, 2016.

T. Chen and S. Y. Dent, Chromatin modifiers and remodellers: regulators of cellular differentiation, Nat. Rev. Genet, vol.15, pp.93-106, 2014.

V. W. Zhou, A. Goren, and B. E. Bernstein, Charting histone modifications and the functional organization of mammalian genomes, Nat. Rev. Genet, vol.12, pp.7-18, 2011.

F. Wang and J. M. Higgins, Histone modifications and mitosis: countermarks, landmarks, and bookmarks, Trends Cell Biol, vol.23, pp.175-184, 2013.

E. I. Campos, J. M. Stafford, and D. Reinberg, Epigenetic inheritance: histone bookmarks across generations, Trends Cell Biol, vol.24, pp.664-674, 2014.

S. L. Berger, T. Kouzarides, R. Shiekhattar, and A. Shilatifard, An operational definition of epigenetics, Genes Dev, vol.23, pp.781-783, 2009.

S. Henikoff and J. M. Greally, Epigenetics, cellular memory and gene regulation, Curr. Biol, vol.26, pp.644-648, 2016.

I. Bedzhov, S. J. Graham, C. Y. Leung, and M. Zernicka-goetz, Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, vol.369, 2014.

C. Marcho, W. Cui, and J. Mager, Epigenetic dynamics during preimplantation development, Reproduction, vol.150, pp.109-120, 2015.

R. Osorno, A. Tsakiridis, F. Wong, N. Cambray, C. Economou et al., The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression, Development, vol.139, pp.2288-2298, 2012.

G. R. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. U. S. A, vol.78, pp.7634-7638, 1981.

M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.292, pp.154-156, 1981.

I. Chambers and S. R. Tomlinson, The transcriptional foundation of pluripotency, Development, vol.136, pp.2311-2322, 2009.

G. Martello and A. Smith, The nature of embryonic stem cells, Annu. Rev. Cell Dev. Biol, vol.30, pp.647-675, 2014.

N. Festuccia, A. Dubois, S. Vandormael-pournin, E. Gallego, A. Tejeda et al., Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network, Nat. Cell Biol, vol.18, pp.1139-1148, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01972743

P. Savatier, S. Huang, L. Szekely, K. G. Wiman, and J. Samarut, Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts, Oncogene, vol.9, pp.809-818, 1994.

Q. L. Ying, J. Wray, J. Nichols, L. Batlle-morera, B. Doble et al., The ground state of embryonic stem cell self-renewal, Nature, vol.453, pp.519-523, 2008.

T. Kunath, M. K. Saba-el-leil, M. Almousailleakh, J. Wray, S. Meloche et al., FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment, Development, vol.134, pp.2895-2902, 2007.

P. Savatier, H. Lapillonne, L. A. Van-grunsven, B. B. Rudkin, and J. Samarut, Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates Dtype cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells, Oncogene, vol.12, pp.309-322, 1996.

J. White, E. Stead, R. Faast, S. Conn, P. Cartwright et al., Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclindependent kinase activity during embryonic stem cell differentiation, Mol. Biol. Cell, vol.16, pp.2018-2027, 2005.

H. Fujii-yamamoto, J. M. Kim, K. Arai, and H. Masai, Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells, J. Biol. Chem, vol.280, p.987, 2005.

R. Faast, J. White, P. Cartwright, L. Crocker, B. Sarcevic et al., Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a), Oncogene, vol.23, pp.491-502, 2004.

E. Stead, J. White, R. Faast, S. Conn, S. Goldstone et al., Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities, Oncogene, vol.21, pp.8320-8333, 2002.

A. Ballabeni, I. H. Park, R. Zhao, W. Wang, P. H. Lerou et al., Cell cycle adaptations of embryonic stem cells, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.252-271, 2011.

L. Jirmanova, M. Afanassieff, S. Gobert-gosse, S. Markossian, and P. Savatier, Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells, Oncogene, vol.21, pp.5515-5528, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00192982

C. L. Mummery, C. E. Van-den-brink, and S. W. De-laat, Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent, Dev. Biol, vol.121, pp.10-19, 1987.

S. Pauklin and L. Vallier, The cell-cycle state of stem cells determines cell fate propensity, Cell, vol.155, pp.135-147, 2013.

A. M. Singh, J. Chappell, R. Trost, L. Lin, T. Wang et al., Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells, Stem Cell Rep, vol.1, pp.532-544, 2013.

D. Coronado, M. Godet, P. Y. Bourillot, Y. Tapponnier, A. Bernat et al., A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency, Stem Cell Res, vol.10, pp.118-131, 2013.

M. Roccio, D. Schmitter, M. Knobloch, Y. Okawa, D. Sage et al., Predicting stem cell fate changes by differential cell cycle progression patterns, Development, vol.140, pp.459-470, 2013.

S. Pauklin, P. Madrigal, A. Bertero, and L. Vallier, Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D, Genes Dev, vol.30, pp.421-433, 2016.

A. M. Singh, Y. Sun, L. Li, W. Zhang, T. Wu et al., Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency, Stem Cell Rep, vol.5, pp.323-336, 2015.

W. L. Fangman and B. J. Brewer, A question of time: replication origins of eukaryotic chromosomes, Cell, vol.71, pp.363-366, 1992.

C. Alabert and A. Groth, Chromatin replication and epigenome maintenance, Nat. Rev. Mol. Cell Biol, vol.13, pp.153-167, 2012.

T. Ishiuchi, R. Enriquez-gasca, E. Mizutani, A. Boskovic, C. Ziegler-birling et al., Early embryoniclike cells are induced by downregulating replication-dependent chromatin assembly, Nat. Struct. Mol. Biol, vol.22, pp.662-671, 2015.

L. Schermelleh, A. Haemmer, F. Spada, N. Rosing, D. Meilinger et al., Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation, Nucleic Acids Res, vol.35, pp.4301-4312, 2007.

S. Milutinovic, Q. Zhuang, and M. Szyf, Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification, J. Biol. Chem, vol.277, p.978, 2002.

P. O. Esteve, H. G. Chin, A. Smallwood, G. R. Feehery, O. Gangisetty et al., Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication, Genes Dev, vol.20, pp.3089-3103, 2006.

A. Loyola, H. Tagami, T. Bonaldi, D. Roche, J. P. Quivy et al., The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin, EMBO Rep, vol.10, pp.769-775, 2009.

S. Hasan, P. O. Hassa, R. Imhof, and M. O. Hottiger, Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis, Nature, vol.410, pp.387-391, 2001.

R. J. Burgess and Z. Zhang, Histone chaperones in nucleosome assembly and human disease, Nat. Struct. Mol. Biol, vol.20, pp.14-22, 2013.

S. Ramachandran and S. Henikoff, Transcriptional regulators compete with nucleosomes post-replication, Cell, vol.165, pp.580-592, 2016.

P. Vasseur, S. Tonazzini, R. Ziane, A. Camasses, O. J. Rando et al., Dynamics of nucleosome positioning maturation following genomic replication, Cell Rep, vol.16, pp.2651-2665, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187345

I. J. De-castro, E. Gokhan, and P. Vagnarelli, Resetting a functional G1 nucleus after mitosis, Chromosoma, vol.125, pp.607-619, 2016.

J. Shin, T. W. Kim, H. Kim, H. J. Kim, M. Y. Suh et al., Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells, Elife, vol.5, p.10877, 2016.

C. Muchardt, J. C. Reyes, B. Bourachot, E. Leguoy, and M. Yaniv, The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis, EMBO J, vol.15, pp.3394-3402, 1996.

S. Sif, P. T. Stukenberg, M. W. Kirschner, and R. E. Kingston, Mitotic inactivation of a human SWI/SNF chromatin remodeling complex, Genes Dev, vol.12, pp.2842-2851, 1998.

S. Kadauke and G. A. Blobel, Mitotic bookmarking by transcription factors, Epigenet. Chromatin, vol.6, p.6, 2013.

E. Terrenoire, F. Mcronald, J. A. Halsall, P. Page, R. S. Illingworth et al., Immunostaining of modified histones defines high-level features of the human metaphase epigenome, Genome Biol, vol.11, 2010.

C. C. Hsiung, C. R. Bartman, P. Huang, P. Ginart, A. J. Stonestrom et al., A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition, Genes Dev, vol.30, pp.1423-1439, 2016.

R. A. Grandy, T. W. Whitfield, H. Wu, M. P. Fitzgerald, J. J. Vanoudenhove et al., Genome-wide studies reveal that H3K4me3 modification in bivalent genes is dynamically regulated during the pluripotent cell cycle and stabilized upon differentiation, Mol. Cell. Biol, vol.36, pp.615-627, 2015.

K. Liang, A. R. Woodfin, B. D. Slaughter, J. R. Unruh, A. C. Box et al., Mitotic transcriptional activation: clearance of actively engaged Pol II via transcriptional elongation control in mitosis, Mol. Cell, vol.60, pp.435-445, 2015.

G. Juan, W. Pan, and Z. Darzynkiewicz, DNA segments sensitive to single-strand-specific nucleases are present in chromatin of mitotic cells, Exp. Cell Res, vol.227, pp.197-202, 1996.

A. Dey, A. Nishiyama, T. Karpova, J. Mcnally, and K. Ozato, Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription, Mol. Biol. Cell, vol.20, pp.4899-4909, 2009.

G. A. Blobel, S. Kadauke, E. Wang, A. W. Lau, J. Zuber et al., A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit, Mol. Cell, vol.36, pp.970-983, 2009.

H. Xing, N. L. Vanderford, and K. D. Sarge, The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action, Nat. Cell Biol, vol.10, pp.1318-1323, 2008.

S. Kadauke, M. I. Udugama, J. M. Pawlicki, J. C. Achtman, D. P. Jain et al., Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1, Cell, vol.150, pp.725-737, 2012.

H. Niwa, J. Miyazaki, and A. G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nat. Genet, vol.24, pp.372-376, 2000.

S. Masui, Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nat. Cell Biol, vol.9, pp.625-635, 2007.

J. Jiang, Y. S. Chan, Y. H. Loh, J. Cai, G. Q. Tong et al., A core Klf circuitry regulates self-renewal of embryonic stem cells, Nat. Cell Biol, vol.10, pp.353-360, 2008.
DOI : 10.1038/ncb1698

N. Festuccia, R. Osorno, F. Halbritter, V. Karwackineisius, P. Navarro et al., Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells, Cell Stem Cell, vol.11, pp.477-490, 2012.
DOI : 10.1016/j.stem.2012.08.002

URL : https://doi.org/10.1016/j.stem.2012.08.002

I. Chambers, J. Silva, D. Colby, J. Nichols, B. Nijmeijer et al., Nanog safeguards pluripotency and mediates germline development, Nature, vol.450, pp.1230-1234, 2007.
DOI : 10.1038/nature06403

K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, Cell, vol.113, pp.631-642, 2003.

H. Niwa, Y. Toyooka, D. Shimosato, D. Strumpf, K. Takahashi et al., Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation, vol.123, pp.917-929, 2005.
DOI : 10.1016/j.cell.2005.08.040

URL : https://doi.org/10.1016/j.cell.2005.08.040

D. Shimosato, M. Shiki, and H. Niwa, Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells, BMC Dev. Biol, vol.7, p.80, 2007.

I. G. Brons, L. E. Smithers, M. W. Trotter, P. Rugg-gunn, B. Sun et al., Derivation of pluripotent epiblast stem cells from mammalian embryos, Nature, vol.448, pp.191-195, 2007.
DOI : 10.1038/nature05950

P. J. Tesar, J. G. Chenoweth, F. A. Brook, T. J. Davies, E. P. Evans et al., New cell lines from mouse epiblast share defining features with human embryonic stem cells, Nature, vol.448, pp.196-199, 2007.
DOI : 10.1038/nature05972

S. Geula, S. Moshitch-moshkovitz, D. Dominissini, A. A. Mansour, N. Kol et al., Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation, Science, vol.347, pp.1002-1006, 2015.

M. Entrevan, B. Schuettengruber, and G. Cavalli, Regulation of genome architecture and function by polycomb proteins, Trends Cell Biol, vol.26, pp.511-525, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01351264

P. A. Steffen and L. Ringrose, What are memories made of? How polycomb and trithorax proteins mediate epigenetic memory, Nat. Rev. Mol. Cell Biol, vol.15, pp.340-356, 2014.
DOI : 10.1038/nrm3789

K. H. Hansen, A. P. Bracken, D. Pasini, N. Dietrich, S. S. Gehani et al., A model for transmission of the H3K27me3 epigenetic mark, Nat. Cell Biol, vol.10, pp.1291-1300, 2008.

M. Arora, C. Z. Packard, T. Banerjee, and J. D. Parvin, RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins, Nucleic Acids Res, vol.44, pp.2136-2144, 2016.
DOI : 10.1093/nar/gkv1223

URL : https://academic.oup.com/nar/article-pdf/44/5/2136/17437702/gkv1223.pdf

N. E. Follmer, A. H. Wani, and N. J. Francis, Polycomb group protein is retained at specific sites on chromatin in mitosis, PLoS Genet, vol.8, p.1003135, 2012.
DOI : 10.1371/journal.pgen.1003135

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003135&type=printable

T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, vol.448, pp.553-560, 2007.

L. A. Boyer, K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros et al., Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, vol.441, pp.349-353, 2006.
DOI : 10.1038/nature04733

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, vol.125, pp.315-326, 2006.

V. Azuara, P. Perry, S. Sauer, M. Spivakov, H. F. Jorgensen et al., Chromatin signatures of pluripotent cell lines, Nat. Cell Biol, vol.8, pp.532-538, 2006.
DOI : 10.1038/ncb1403

M. Ku, R. P. Koche, E. Rheinbay, E. M. Mendenhall, M. Endoh et al., Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains, PLoS Genet, vol.4, p.1000242, 2008.

M. Endoh, T. A. Endo, T. Endoh, K. Isono, J. Sharif et al., Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity, PLoS Genet, vol.8, p.1002774, 2012.

O. Alder, F. Lavial, A. Helness, E. Brookes, S. Pinho et al., Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment, Development, vol.137, pp.2483-2492, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01934527

J. K. Stock, S. Giadrossi, M. Casanova, E. Brookes, M. Vidal et al., Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells, Nat. Cell Biol, vol.9, pp.1428-1435, 2007.

W. W. Tee, S. S. Shen, O. Oksuz, V. Narendra, and D. Reinberg, Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs, Cell, vol.156, pp.678-690, 2014.

X. Shen, Y. Liu, Y. J. Hsu, Y. Fujiwara, J. Kim et al., EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency, Mol. Cell, vol.32, pp.491-502, 2008.

D. Pasini, A. P. Bracken, M. R. Jensen, E. Lazzerini-denchi, and K. Helin, Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity, EMBO J, vol.23, pp.4061-4071, 2004.

S. J. Chamberlain, D. Yee, and T. Magnuson, Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency, Stem Cells, vol.26, pp.1496-1505, 2008.

N. D. Montgomery, D. Yee, A. Chen, S. Kalantry, S. J. Chamberlain et al., The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation, Curr. Biol, vol.15, pp.942-947, 2005.

H. Marks, T. Kalkan, R. Menafra, S. Denissov, K. Jones et al., The transcriptional and epigenomic foundations of ground state pluripotency, Cell, vol.149, pp.590-604, 2012.

M. Leeb and A. Wutz, Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells, J. Cell Biol, vol.178, pp.219-229, 2007.

P. Van-der-stoop, E. A. Boutsma, D. Hulsman, S. Noback, M. Heimerikx et al., Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells, PLoS One, vol.3, p.2235, 2008.

M. Endoh, T. A. Endo, T. Endoh, Y. Fujimura, O. Ohara et al., Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity, Development, vol.135, pp.1513-1524, 2008.

M. Leeb, D. Pasini, M. Novatchkova, M. Jaritz, K. Helin et al., Polycomb complexes act redundantly to repress genomic repeats and genes, Genes Dev, vol.24, pp.265-276, 2010.

A. R. Pengelly, R. Kalb, K. Finkl, and J. Muller, Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation, Genes Dev, vol.29, pp.1487-1492, 2015.

R. S. Illingworth, M. Moffat, A. R. Mann, D. Read, C. J. Hunter et al., The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development, Genes Dev, vol.29, pp.1897-1902, 2015.

J. W. Voncken, B. A. Roelen, M. Roefs, S. De-vries, E. Verhoeven et al., Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.2468-2473, 2003.

D. O'carroll, S. Erhardt, M. Pagani, S. C. Barton, M. A. Surani et al., The polycomb-group gene Ezh2 is required for early mouse development, Mol. Cell. Biol, vol.21, pp.4330-4336, 2001.

C. Faust, K. A. Lawson, N. J. Schork, B. Thiel, and T. Magnuson, The polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo, Development, vol.125, pp.4495-4506, 1998.

E. M. Morin-kensicki, C. Faust, C. Lamantia, and T. Magnuson, Cell and tissue requirements for the gene eed during mouse gastrulation and organogenesis, Genesis, vol.31, pp.142-146, 2001.

D. Pasini, A. P. Bracken, J. B. Hansen, M. Capillo, and K. Helin, The polycomb group protein Suz12 is required for embryonic stem cell differentiation, Mol. Cell. Biol, vol.27, pp.3769-3779, 2007.

E. M. Riising, I. Comet, B. Leblanc, X. Wu, J. V. Johansen et al., Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide, Mol. Cell, vol.55, pp.347-360, 2014.

M. Tachibana, K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta et al., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis, Genes Dev, vol.16, pp.1779-1791, 2002.

M. Tachibana, J. Ueda, M. Fukuda, N. Takeda, T. Ohta et al., Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9, Genes Dev, vol.19, pp.815-826, 2005.

A. H. Peters, D. O'carroll, H. Scherthan, K. Mechtler, S. Sauer et al., Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability, Cell, vol.107, pp.323-337, 2001.

B. Lehnertz, Y. Ueda, A. A. Derijck, U. Braunschweig, L. Perez-burgos et al., Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin, Curr. Biol, vol.13, pp.1192-1200, 2003.

H. Wang, W. An, R. Cao, L. Xia, H. Erdjument-bromage et al., mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression, Mol. Cell, vol.12, pp.475-487, 2003.

N. Saksouk, E. Simboeck, and J. Dejardin, Constitutive heterochromatin formation and transcription in mammals, Epigenet. Chromatin, vol.8, p.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144005

A. H. Peters, S. Kubicek, K. Mechtler, R. J. O'sullivan, A. A. Derijck et al., Partitioning and plasticity of repressive histone methylation states in mammalian chromatin, Mol. Cell, vol.12, pp.1577-1589, 2003.

J. A. Park, A. J. Kim, Y. Kang, Y. J. Jung, H. K. Kim et al., Deacetylation and methylation at histone H3 lysine 9 (H3K9) coordinate chromosome condensation during cell cycle progression, Mol. Cell, vol.31, pp.343-349, 2011.

S. Kobayakawa, K. Miike, M. Nakao, and K. Abe, Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells, Genes Cells, vol.12, pp.447-460, 2007.

E. Meshorer, D. Yellajoshula, E. George, P. J. Scambler, D. T. Brown et al., Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells, Dev. Cell, vol.10, pp.105-116, 2006.

N. Saksouk, T. K. Barth, C. Ziegler-birling, N. Olova, A. Nowak et al., Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation, Mol. Cell, vol.56, pp.580-594, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091064

A. Tsumura, T. Hayakawa, Y. Kumaki, S. Takebayashi, M. Sakaue et al., Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, Genes Cells, vol.11, pp.805-814, 2006.

M. Walter, A. Teissandier, and R. Perez-palacios, Bourc'his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells, Elife, vol.5, p.11418, 2016.

A. Bulut-karslioglu, V. Perrera, M. Scaranaro, I. A. De-la-rosa-velazquez, S. Van-de-nobelen et al., A transcription factor-based mechanism for mouse heterochromatin formation, Nat. Struct. Mol. Biol, vol.19, pp.1023-1030, 2012.

S. P. Sripathy, J. Stevens, and D. C. Schultz, The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression, Mol. Cell. Biol, vol.26, pp.8623-8638, 2006.

C. L. Novo, C. Tang, K. Ahmed, U. Djuric, E. Fussner et al., The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells, Genes Dev, vol.30, pp.1101-1115, 2016.

C. Stocking and C. A. Kozak, Murine endogenous retroviruses, Cell. Mol. Life Sci, vol.65, pp.3383-3398, 2008.

I. A. Maksakova, P. J. Thompson, P. Goyal, S. J. Jones, P. B. Singh et al., Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells, Epigenet. Chromatin, vol.6, p.15, 2013.

T. Matsui, D. Leung, H. Miyashita, I. A. Maksakova, H. Miyachi et al., Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET, Nature, vol.464, pp.927-931, 2010.

M. M. Karimi, P. Goyal, I. A. Maksakova, M. Bilenky, D. Leung et al., DNA methylation and SETDB1/ H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs, Cell Stem Cell, vol.8, pp.676-687, 2011.

H. M. Rowe, J. Jakobsson, D. Mesnard, J. Rougemont, S. Reynard et al., KAP1 controls endogenous retroviruses in embryonic stem cells, Nature, vol.463, pp.237-240, 2010.

G. Falco, S. L. Lee, I. Stanghellini, U. C. Bassey, T. Hamatani et al., Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells, Dev. Biol, vol.307, pp.539-550, 2007.

M. Zalzman, G. Falco, L. V. Sharova, A. Nishiyama, M. Thomas et al., Zscan4 regulates telomere elongation and genomic stability in ES cells, Nature, vol.464, pp.858-863, 2010.

T. S. Macfarlan, W. D. Gifford, S. Driscoll, K. Lettieri, H. M. Rowe et al., Embryonic stem cell potency fluctuates with endogenous retrovirus activity, Nature, vol.487, pp.57-63, 2012.

T. Amano, T. Hirata, G. Falco, M. Monti, L. V. Sharova et al., Zscan4 restores the developmental potency of embryonic stem cells, Nat. Commun, vol.4, 1966.

T. Akiyama, L. Xin, M. Oda, A. A. Sharov, M. Amano et al., Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells, DNA Res, vol.22, pp.307-318, 2015.

C. Mozzetta, J. Pontis, L. Fritsch, P. Robin, M. Portoso et al., The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing, Mol. Cell, vol.53, pp.277-289, 2014.

J. E. Dodge, Y. K. Kang, H. Beppu, H. Lei, and E. Li, Histone H3-K9 methyltransferase ESET is essential for early development, Mol. Cell. Biol, vol.24, pp.2478-2486, 2004.

P. Yuan, J. Han, G. Guo, Y. L. Orlov, M. Huss et al., Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells, Genes Dev, vol.23, pp.2507-2520, 2009.

Z. D. Smith and A. Meissner, DNA methylation: roles in mammalian development, Nat. Rev. Genet, vol.14, pp.204-220, 2013.

M. B. Stadler, R. Murr, L. Burger, R. Ivanek, F. Lienert et al., DNA-binding factors shape the mouse methylome at distal regulatory regions, Nature, vol.480, pp.490-495, 2011.

P. G. Constantinides, P. A. Jones, and W. Gevers, Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment, Nature, vol.267, pp.364-366, 1977.

T. S. Mikkelsen, J. Hanna, X. Zhang, M. Ku, M. Wernig et al., Dissecting direct reprogramming through integrative genomic analysis, Nature, vol.454, pp.49-55, 2008.

E. Li, T. H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality, Cell, vol.69, pp.915-926, 1992.

M. Okano, D. W. Bell, D. A. Haber, and E. Li, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell, vol.99, pp.247-257, 1999.

L. Jackson-grusby, C. Beard, R. Possemato, M. Tudor, D. Fambrough et al., Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation, Nat. Genet, vol.27, pp.31-39, 2001.

H. G. Leitch, K. R. Mcewen, A. Turp, V. Encheva, T. Carroll et al., Naive pluripotency is associated with global DNA hypomethylation, Nat. Struct. Mol. Biol, vol.20, pp.311-316, 2013.

J. A. Hackett, S. Dietmann, K. Murakami, T. A. Down, H. G. Leitch et al., Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency, Stem Cell Rep, vol.1, pp.518-531, 2013.

E. Habibi, A. B. Brinkman, J. Arand, L. I. Kroeze, H. H. Kerstens et al., Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells, Cell Stem Cell, vol.13, pp.360-369, 2013.

G. Ficz, T. A. Hore, F. Santos, H. J. Lee, W. Dean et al., FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency, Cell Stem Cell, vol.13, pp.351-359, 2013.

F. Von-meyenn, M. Iurlaro, E. Habibi, N. Q. Liu, A. Salehzadehyazdi et al., Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells, Mol. Cell, vol.62, p.983, 2016.

H. Wu and Y. Zhang, Reversing DNA methylation: mechanisms, genomics, and biological functions, Cell, vol.156, pp.45-68, 2014.
DOI : 10.1016/j.cell.2013.12.019

URL : https://doi.org/10.1016/j.cell.2013.12.019

V. Valinluck, H. H. Tsai, D. K. Rogstad, A. Burdzy, A. Bird et al., Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2), Nucleic Acids Res, vol.32, pp.4100-4108, 2004.

S. G. Jin, S. Kadam, and G. P. Pfeifer, Examination of the specificity of DNA methylation profiling techniques, Nucleic Acids Res, vol.38, p.125, 2010.

M. M. Dawlaty, A. Breiling, T. Le, M. I. Barrasa, G. Raddatz et al., Loss of Tet enzymes compromises proper differentiation of embryonic stem cells, Dev. Cell, vol.29, pp.102-111, 2014.

H. Q. Dai, B. A. Wang, L. Yang, J. J. Chen, G. C. Zhu et al., TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling, Nature, vol.538, pp.528-532, 2016.
DOI : 10.1038/nature20095

I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, vol.113, pp.643-655, 2003.

J. Krejci, R. Uhlirova, G. Galiova, S. Kozubek, J. Smigova et al., Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation, J. Cell. Physiol, vol.219, pp.677-687, 2009.

S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, D. J. Hoeppner et al., Global transcription in pluripotent embryonic stem cells, Cell Stem Cell, vol.2, pp.437-447, 2008.
DOI : 10.1016/j.stem.2008.03.021

URL : https://doi.org/10.1016/j.stem.2008.03.021

K. Ahmed, H. Dehghani, P. Rugg-gunn, E. Fussner, J. Rossant et al., Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo, PLoS One, vol.5, p.10531, 2010.

I. Hiratani, T. Ryba, M. Itoh, J. Rathjen, M. Kulik et al., Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis, Genome Res, vol.20, pp.155-169, 2010.

E. Fussner, U. Djuric, M. Strauss, A. Hotta, C. Perez-iratxeta et al., Constitutive heterochromatin reorganization during somatic cell reprogramming, EMBO J, vol.30, pp.1778-1789, 2011.
DOI : 10.1038/emboj.2011.96

URL : http://emboj.embopress.org/content/30/9/1778.full.pdf

J. J. Zylicz, S. Dietmann, U. Gunesdogan, J. A. Hackett, D. Cougot et al., Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development, Elife, vol.4, p.9571, 2015.

B. Wen, H. Wu, Y. Shinkai, R. A. Irizarry, and A. P. Feinberg, Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells, Nat. Genet, vol.41, pp.246-250, 2009.
DOI : 10.1038/ng.297

URL : http://europepmc.org/articles/pmc2632725?pdf=render

E. Bartova, J. Krejci, A. Harnicarova, and S. Kozubek, Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci, Differentiation, vol.76, pp.24-32, 2008.

D. Constantinescu, H. L. Gray, P. J. Sammak, G. P. Schatten, A. B. Csoka et al., C expression is a marker of mouse and human embryonic stem cell differentiation, Stem Cells, vol.24, pp.177-185, 2006.
DOI : 10.1634/stemcells.2006-erratum.2

D. Bhattacharya, S. Talwar, A. Mazumder, and G. V. Shivashankar, Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis, Biophys. J, vol.96, pp.3832-3839, 2009.
DOI : 10.1016/j.bpj.2008.11.075

URL : https://doi.org/10.1016/j.bpj.2008.11.075

C. R. Clapier and B. R. Cairns, The biology of chromatin remodeling complexes, Annu. Rev. Biochem, vol.78, pp.273-304, 2009.

D. C. Hargreaves and G. R. Crabtree, ATP-dependent chromatin remodeling: genetics, genomics and mechanisms, Cell Res, vol.21, pp.396-420, 2011.
DOI : 10.1038/cr.2011.32

URL : https://www.nature.com/articles/cr201132.pdf

J. K. Kim, S. O. Huh, H. Choi, K. S. Lee, D. Shin et al., Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development, Mol. Cell. Biol, vol.21, pp.7787-7795, 2001.

C. Sumi-ichinose, H. Ichinose, D. Metzger, and P. Chambon, SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells, Mol. Cell. Biol, vol.17, pp.5976-5986, 1997.

S. Bultman, T. Gebuhr, D. Yee, C. L. Mantia, J. Nicholson et al., A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes, Mol. Cell, vol.6, pp.1287-1295, 2000.

A. Klochendler-yeivin, L. Fiette, J. Barra, C. Muchardt, C. Babinet et al., The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression, EMBO Rep, vol.1, pp.500-506, 2000.

A. Shilatifard, The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis, Annu. Rev. Biochem, vol.81, pp.65-95, 2012.

C. V. Andreu-vieyra, R. Chen, J. E. Agno, S. Glaser, K. Anastassiadis et al., MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing, PLoS Biol, vol.8, issue.8, p.1000453, 2010.

S. Glaser, S. Lubitz, K. L. Loveland, K. Ohbo, L. Robb et al., The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis, Epigenet. Chromatin, vol.2, p.5, 2009.

S. Glaser, J. Schaft, S. Lubitz, K. Vintersten, F. Van-der-hoeven et al., Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development, Development, vol.133, pp.1423-1432, 2006.

A. S. Bledau, K. Schmidt, K. Neumann, U. Hill, G. Ciotta et al., The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation, Development, vol.141, pp.1022-1035, 2014.

P. Ernst, M. Mabon, A. J. Davidson, L. I. Zon, and S. J. Korsmeyer, An Mll-dependent Hox program drives hematopoietic progenitor expansion, Curr. Biol, vol.14, pp.2063-2069, 2004.

J. E. Lee, C. Wang, S. Xu, Y. W. Cho, L. Wang et al., H3K4 mono-and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation, Elife, vol.2, p.1503, 2013.

D. Hu, A. S. Garruss, X. Gao, M. A. Morgan, M. Cook et al., The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells, Nat. Struct. Mol. Biol, vol.20, pp.1093-1097, 2013.

S. Denissov, H. Hofemeister, H. Marks, A. Kranz, G. Ciotta et al., Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant, Development, vol.141, pp.526-537, 2014.

S. Lubitz, S. Glaser, J. Schaft, A. F. Stewart, and K. Anastassiadis, Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2, Mol. Biol. Cell, vol.18, pp.2356-2366, 2007.

L. Fang, J. Zhang, H. Zhang, X. Yang, X. Jin et al., H3K4 methyltransferase Set1a is a key Oct4 coactivator essential for generation of Oct4 positive inner cell mass, Stem Cells, vol.34, pp.565-580, 2016.

J. Wysocka, T. Swigut, T. A. Milne, Y. Dou, X. Zhang et al., WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development, Cell, vol.121, pp.859-872, 2005.

Y. S. Ang, S. Y. Tsai, D. F. Lee, J. Monk, J. Su et al., Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network, Cell, vol.145, pp.183-197, 2011.

M. Wan, J. Liang, Y. Xiong, F. Shi, Y. Zhang et al., The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells, J. Biol. Chem, vol.288, pp.5039-5048, 2013.

J. Z. Stoller, L. Huang, C. C. Tan, F. Huang, D. D. Zhou et al., Ash2l interacts with Tbx1 and is required during early embryogenesis, pp.569-576, 2010.

D. L. Carlone and D. G. Skalnik, CpG binding protein is crucial for early embryonic development, Mol. Cell. Biol, vol.21, pp.7601-7606, 2001.

T. Clouaire, S. Webb, P. Skene, R. Illingworth, A. Kerr et al., Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells, Genes Dev, vol.26, pp.1714-1728, 2012.

P. Sudarsanam and F. Winston, The Swi/Snf family nucleosomeremodeling complexes and transcriptional control, Trends Genet, vol.16, pp.345-351, 2000.

C. W. Roberts and S. H. Orkin, The SWI/SNF complex-chromatin and cancer, Nat. Rev. Cancer, vol.4, pp.133-142, 2004.

W. Wang, J. Cote, Y. Xue, S. Zhou, P. A. Khavari et al., Purification and biochemical heterogeneity of the mammalian SWI-SNF complex, EMBO J, vol.15, pp.5370-5382, 1996.

J. C. Reyes, J. Barra, C. Muchardt, A. Camus, C. Babinet et al., Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha), EMBO J, vol.17, pp.6979-6991, 1998.

S. J. Bultman, T. C. Gebuhr, H. Pan, P. Svoboda, R. M. Schultz et al., Maternal BRG1 regulates zygotic genome activation in the mouse, Genes Dev, vol.20, pp.1744-1754, 2006.

C. J. Guidi, A. T. Sands, B. P. Zambrowicz, T. K. Turner, D. A. Demers et al., Disruption of Ini1 leads to periimplantation lethality and tumorigenesis in mice, Mol. Cell. Biol, vol.21, pp.3598-3603, 2001.

X. Gao, P. Tate, P. Hu, R. Tjian, W. C. Skarnes et al., ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.6656-6661, 2008.

J. Lessard, W. Ji, J. A. Ranish, M. Wan, M. M. Winslow et al., An essential switch in subunit composition of a chromatin remodeling complex during neural development, Neuron, vol.55, pp.201-215, 2007.

L. Ho, J. L. Ronan, J. Wu, B. T. Staahl, L. Chen et al., An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5181-5186, 2009.

Z. Yan, Z. Wang, L. Sharova, A. A. Sharov, C. Ling et al., BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells, Stem Cells, vol.26, pp.1155-1165, 2008.

B. L. Kidder, S. Palmer, and J. G. Knott, SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells, Stem Cells, vol.27, pp.317-328, 2009.

L. Ho, R. Jothi, J. L. Ronan, K. Cui, K. Zhao et al., An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5187-5191, 2009.

L. Ho, E. L. Miller, J. L. Ronan, W. Q. Ho, R. Jothi et al., esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function, vol.13, pp.903-913, 2011.

M. De-dieuleveult, K. Yen, I. Hmitou, A. Depaux, F. Boussouar et al., Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells, Nature, vol.530, pp.113-116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412602

I. Lei, J. West, Z. Yan, X. Gao, P. Fang et al., BAF250a protein regulates nucleosome occupancy and histone modifications in priming embryonic stem cell differentiation, J. Biol. Chem, vol.290, pp.343-362, 2015.

S. Awad and A. H. Hassan, The Swi2/Snf2 bromodomain is important for the full binding and remodeling activity of the SWI/SNF complex on H3-and H4-acetylated nucleosomes, Ann. N. Y. Acad. Sci, vol.1138, pp.366-375, 2008.

L. Ho and G. R. Crabtree, Chromatin remodelling during development, Nature, vol.463, pp.474-484, 2010.

S. K. Hota and B. G. Bruneau, ATP-dependent chromatin remodeling during mammalian development, Development, vol.143, pp.2882-2897, 2016.

T. Stopka and A. I. Skoultchi, The ISWI ATPase Snf2h is required for early mouse development, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.97-111, 2003.

C. G. Marfella and A. N. Imbalzano, The Chd family of chromatin remodelers, Mutat. Res, vol.618, pp.30-40, 2007.

A. Gaspar-maia, A. Alajem, F. Polesso, R. Sridharan, M. J. Mason et al., Chd1 regulates open chromatin and pluripotency of embryonic stem cells, Nature, vol.460, pp.863-868, 2009.

M. P. Schnetz, L. Handoko, B. Akhtar-zaidi, C. F. Bartels, C. F. Pereira et al., CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression, PLoS Genet, vol.6, p.1001023, 2010.

K. Kaji, I. M. Caballero, R. Macleod, J. Nichols, V. A. Wilson et al., The NuRD component Mbd3 is required for pluripotency of embryonic stem cells, Nat. Cell Biol, vol.8, pp.285-292, 2006.

K. Kaji, J. Nichols, and B. Hendrich, Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells, Development, vol.134, pp.1123-1132, 2007.

B. Hendrich, J. Guy, B. Ramsahoye, V. A. Wilson, and A. Bird, Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development, Genes Dev, vol.15, p.710, 2001.

Y. Rais, A. Zviran, S. Geula, O. Gafni, E. Chomsky et al., Deterministic direct reprogramming of somatic cells to pluripotency, Nature, vol.502, pp.65-70, 2013.

N. Reynolds, P. Latos, A. Hynes-allen, R. Loos, D. Leaford et al., NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment, Cell Stem Cell, vol.10, pp.583-594, 2012.

N. Reynolds, M. Salmon-divon, H. Dvinge, A. Hynes-allen, G. Balasooriya et al., NuRD-mediated deacetylation of H3K27 facilitates recruitment of polycomb repressive complex 2 to direct gene repression, EMBO J, vol.31, pp.593-605, 2012.

C. Gorrini, M. Squatrito, C. Luise, N. Syed, D. Perna et al., Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response, Nature, vol.448, pp.1063-1067, 2007.

Z. Herceg, W. Hulla, D. Gell, C. Cuenin, M. Lleonart et al., Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression, Nat. Genet, vol.29, pp.206-211, 2001.

Y. Hu, J. B. Fisher, S. Koprowski, D. Mcallister, M. S. Kim et al., Homozygous disruption of the Tip60 gene causes early embryonic lethality, Dev. Dyn, vol.238, pp.2912-2921, 2009.

T. G. Fazzio, J. T. Huff, and B. Panning, An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity, Cell, vol.134, pp.162-174, 2008.

M. Squatrito, C. Gorrini, and B. Amati, Tip60 in DNA damage response and growth control: many tricks in one HAT, Trends Cell Biol, vol.16, pp.433-442, 2006.

S. K. Pradhan, T. Su, L. Yen, K. Jacquet, C. Huang et al., EP400 deposits H3.3 into promoters and enhancers during gene activation, Mol. Cell, vol.61, pp.27-38, 2016.

L. Wang, Y. Du, J. M. Ward, T. Shimbo, B. Lackford et al., INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development, Cell Stem Cell, vol.14, pp.575-591, 2014.

L. Bintu, J. Yong, Y. E. Antebi, K. Mccue, Y. Kazuki et al., Dynamics of epigenetic regulation at the single-cell level, Science, vol.351, pp.720-724, 2016.

R. S. Illingworth, J. J. Holzenspies, F. V. Roske, W. A. Bickmore, and J. M. Brickman, Polycomb enables primitive endoderm lineage priming in embryonic stem cells, Elife, vol.5, 2016.

H. G. Leitch, M. A. Surani, and P. Hajkova, DNA (de)methylation: the passive route to naivety?, Trends Genet, vol.32, pp.592-595, 2016.

N. Festuccia, R. Osorno, V. Wilson, and I. Chambers, The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states, Curr. Opin. Genet. Dev, vol.23, pp.504-511, 2013.

T. Boroviak, R. Loos, P. Bertone, A. Smith, and J. Nichols, The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification, Nat. Cell Biol, vol.16, pp.516-528, 2014.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

D. Egli, G. Birkhoff, and K. Eggan, Mediators of reprogramming: transcription factors and transitions through mitosis, Nat. Rev. Mol. Cell Biol, vol.9, pp.505-516, 2008.

C. Alabert, T. K. Barth, N. Reveron-gomez, S. Sidoli, A. Schmidt et al., Two distinct modes for propagation of histone PTMs across the cell cycle, Genes Dev, vol.29, pp.585-590, 2015.

H. S. Lee, S. A. Lee, S. K. Hur, J. W. Seo, and J. Kwon, Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis, Nat. Commun, vol.5, p.5128, 2014.

S. M. Cohen, P. D. Chastain, I. I. , G. B. Rosson, B. S. Groh et al., BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression, Nucleic Acids Res, vol.38, pp.6906-6919, 2010.

H. Julienne, B. Audit, and A. Arneodo, Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency, PLoS Comput. Biol, vol.11, p.1003969, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01557072

X. Q. Ge, J. Han, E. C. Cheng, S. Yamaguchi, N. Shima et al., Embryonic stem cells license a high level of dormant origins to protect the genome against replication stress, Stem Cell Rep, vol.5, pp.185-194, 2015.

A. Gagliardi, N. P. Mullin, Z. Ying-tan, D. Colby, A. I. Kousa et al., A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal, EMBO J, vol.32, pp.2231-2247, 2013.

M. H. Kagey, J. J. Newman, S. Bilodeau, Y. Zhan, D. A. Orlando et al., Mediator and cohesin connect gene expression and chromatin architecture, Nature, vol.467, pp.430-435, 2010.

J. Yan, M. Enge, T. Whitington, K. Dave, J. Liu et al., Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites, Cell, vol.154, pp.801-813, 2013.

E. F. Michelotti, S. Sanford, and D. Levens, Marking of active genes on mitotic chromosomes, Nature, vol.388, pp.895-899, 1997.

C. C. Hsiung, C. S. Morrissey, M. Udugama, C. L. Frank, C. A. Keller et al., Genome accessibility is widely preserved and locally modulated during mitosis, Genome Res, vol.25, pp.213-225, 2015.

F. Verdeguer, S. Le-corre, E. Fischer, C. Callens, S. Garbay et al., A mitotic transcriptional switch in polycystic kidney disease, Nat. Med, vol.16, pp.106-110, 2010.

J. M. Caravaca, G. Donahue, J. S. Becker, X. He, C. Vinson et al., Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes, Genes Dev, vol.27, pp.251-260, 2013.

D. W. Young, M. Q. Hassan, J. Pratap, M. Galindo, S. K. Zaidi et al., Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2, Nature, vol.445, pp.442-446, 2007.

R. Zhao, T. Nakamura, Y. Fu, Z. Lazar, and D. L. Spector, Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation, Nat. Cell Biol, vol.13, pp.1295-1304, 2011.

G. Martello, T. Sugimoto, E. Diamanti, A. Joshi, R. Hannah et al., Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal, Cell Stem Cell, vol.11, pp.491-504, 2012.

S. S. Teves, L. An, A. S. Hansen, L. Xie, X. Darzacq et al., Dynamic mode of mitotic bookmarking by transcription factors, Elife, vol.5, p.22280, 2016.

R. P. Halley-stott, J. Jullien, V. Pasque, and J. Gurdon, Mitosis gives a brief window of opportunity for a change in gene transcription, PLoS Biol, vol.12, p.1001914, 2014.

Z. Shao, C. Yao, A. Khodadadi-jamayran, W. Xu, T. M. Townes et al., Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET Bromodomains, Cell Rep, vol.16, pp.3138-3145, 2016.

C. Faust, A. Schumacher, B. Holdener, and T. Magnuson, The eed mutation disrupts anterior mesoderm production in mice, Development, vol.121, pp.273-285, 1995.

M. De-napoles, J. E. Mermoud, R. Wakao, Y. A. Tang, M. Endoh et al., Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation, Dev. Cell, vol.7, pp.663-676, 2004.

M. Del-mar-lorente, C. Marcos-gutierrez, C. Perez, J. Schoorlemmer, A. Ramirez et al., Loss-and gainof-function mutations show a polycomb group function for Ring1A in mice, Development, vol.127, pp.5093-5100, 2000.

D. L. Carlone, J. H. Lee, S. R. Young, E. Dobrota, J. S. Butler et al., Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein, Mol. Cell. Biol, vol.25, pp.4881-4891, 2005.

A. Bertero, P. Madrigal, A. Galli, N. C. Hubner, I. Moreno et al., Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark, Genes Dev, vol.29, pp.702-717, 2015.

S. L. Smith-roe and S. J. Bultman, Combined gene dosage requirement for SWI/SNF catalytic subunits during early mammalian development, Mamm. Genome, vol.24, pp.21-29, 2013.

C. Schaniel, Y. S. Ang, K. Ratnakumar, C. Cormier, T. James et al., Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells, Stem Cells, vol.27, pp.2979-2991, 2009.

M. D. Kaeser, A. Aslanian, M. Q. Dong, J. R. Yates, I. et al., BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells, J. Biol. Chem, vol.283, pp.254-286, 2008.

M. Guzman-ayala, M. Sachs, F. M. Koh, C. Onodera, A. Bulutkarslioglu et al., Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast, Development, vol.142, pp.118-127, 2015.

S. Suzuki, Y. Nozawa, S. Tsukamoto, T. Kaneko, I. Manabe et al., CHD1 acts via the Hmgpi pathway to regulate mouse early embryogenesis, Development, vol.142, pp.2375-2384, 2015.

C. G. Marfella, Y. Ohkawa, A. H. Coles, D. S. Garlick, S. N. Jones et al., Mutation of the SNF2 family member Chd2 affects mouse development and survival, J. Cell. Physiol, vol.209, pp.162-171, 2006.

L. Siggens, L. Cordeddu, M. Ronnerblad, A. Lennartsson, and K. Ekwall, Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions, Epigenet. Chromatin, vol.8, p.4, 2015.

D. Zhu, J. Fang, Y. Li, and J. Zhang, Mbd3, a component of NuRD/ Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation, PLoS One, vol.4, p.7684, 2009.

A. O'shaughnessy-kirwan, J. Signolet, I. Costello, S. Gharbi, and B. Hendrich, Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification, Development, vol.142, pp.2586-2597, 2015.

J. Landry, A. A. Sharov, Y. Piao, L. V. Sharova, H. Xiao et al., Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells, PLoS Genet, vol.4, p.1000241, 2008.