F. Bajolle, S. Zaffran, S. M. Meilhac, M. Dandonneau, T. Chang et al., Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field, Dev Biol, vol.313, pp.25-34, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311126

L. B. Balsam, A. J. Wagers, J. L. Christensen, T. Kofidis, I. L. Weissman et al., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, vol.428, pp.668-673, 2004.

S. P. Barry, S. M. Davidson, and P. A. Townsend, Molecular regulation of cardiac hypertrophy, Int J Biochem Cell Biol, vol.40, pp.2023-2039, 2008.

A. P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana et al., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, vol.114, pp.763-776, 2003.

A. P. Beltrami, K. Urbanek, J. Kajstura, S. M. Yan, N. Finato et al., Evidence that human cardiac myocytes divide after myocardial infarction, N Engl J Med, vol.344, pp.1750-1757, 2001.

O. Bergmann, R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-heider et al., Evidence for cardiomyocyte renewal in humans, Science, vol.324, pp.98-102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00374382

N. Bertrand, M. Roux, L. Ryckebusch, K. Niederreither, P. Dolle et al., Hox genes define distinct progenitor sub-domains within the second heart field, Dev Biol, vol.353, pp.266-274, 2011.

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, J Clin Invest, vol.120, pp.1125-1139, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00451770

C. Bolte, Y. Zhang, I. C. Wang, T. V. Kalin, J. D. Molkentin et al., Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development, PLoS One, vol.6, p.22217, 2011.

A. Bondue, G. Lapouge, C. Paulissen, C. Semeraro, M. Iacovino et al., Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification, Cell Stem Cell, vol.3, pp.69-84, 2008.

C. B. Brown, J. M. Wenning, M. M. Lu, D. J. Epstein, E. N. Meyers et al., Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse, Dev Biol, vol.267, pp.190-202, 2004.

M. Buckingham, C. Biben, and K. A. Lawson, Fate mapping of pre-cardiac cells in the developing mouse, Genetic control of heart development, pp.31-33, 1997.

M. Buckingham, S. Meilhac, and S. Zaffran, Building the mammalian heart from two sources of myocardial cells, Nat Rev Genet, vol.6, pp.826-835, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118537

C. L. Cai, X. Liang, Y. Shi, P. H. Chu, S. L. Pfaff et al., Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev Cell, vol.5, pp.877-889, 2003.

C. L. Cai, J. C. Martin, Y. Sun, L. Cui, L. Wang et al., A myocardial lineage derives from Tbx18 epicardial cells, Nature, vol.454, pp.104-108, 2008.

C. L. Cai, W. Zhou, L. Yang, L. Bu, Y. Qyang et al., T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis, Development, vol.132, pp.2475-2487, 2005.

T. Camenisch, R. Runyan, and R. R. Markwald, Molecular regulation of cushion morphogenesis, Heart development and regeneration, pp.363-387, 2010.

T. D. Camenisch, J. A. Schroeder, J. Bradley, S. E. Klewer, and J. A. Mcdonald, Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors, Nat Med, vol.8, pp.850-855, 2002.

T. D. Camenisch, A. P. Spicer, T. Brehm-gibson, J. Biesterfeldt, M. L. Augustine et al., Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme, J Clin Invest, vol.106, pp.349-360, 2000.

R. Carmona, J. A. Guadix, E. Cano, A. Ruiz-villalba, V. Portillo-sanchez et al., The embryonic epicardium: an essential element of cardiac development, J Cell Mol Med, vol.14, pp.2066-2072, 2010.

D. Catalucci, M. V. Latronico, O. Ellingsen, and G. Condorelli, Physiological myocardial hypertrophy: how and why?, Front Biosci, vol.13, pp.312-324, 2008.

P. S. Chan-thomas, R. P. Thompson, B. Robert, M. H. Yacoub, and P. J. Barton, Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick, Dev Dyn, vol.197, pp.203-216, 1993.

H. Chen, S. Shi, L. Acosta, W. Li, J. Lu et al., BMP10 is essential for maintaining cardiac growth during murine cardiogenesis, Development, vol.131, pp.2219-2231, 2004.

Y. H. Choi, A. Kurtz, and C. Stamm, Mesenchymal stem cells for cardiac cell therapy, Hum Gene Ther, vol.22, pp.3-17, 2011.

J. J. Chong, V. Chandrakanthan, M. Xaymardan, N. S. Asli, J. Li et al., Adult cardiac-resident MSC-like stem cells with a proepicardial origin, Cell Stem Cell, vol.9, pp.527-540, 2011.

V. Christoffels, W. M. Hoogaars, and A. Moorman, Patterning and development of the conduction system of the heart: origins of the conduction system in development, Heart development and regeneration, pp.171-192, 2010.

V. M. Christoffels, T. Grieskamp, J. Norden, M. T. Mommersteeg, C. Rudat et al., Tbx18 and the fate of epicardial progenitors, Nature, vol.458, pp.9-10, 2009.

V. M. Christoffels, W. M. Hoogaars, A. Tessari, D. E. Clout, A. F. Moorman et al., T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers, Dev Dyn, vol.229, pp.763-770, 2004.

V. M. Christoffels, M. T. Mommersteeg, M. O. Trowe, O. W. Prall, C. De-gier-de-vries et al., Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18, Circ Res, vol.98, pp.1555-1563, 2006.

M. V. De-la-cruz, M. Gimenez-ribotta, O. Saravalli, and R. Cayre, The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development of the atrioventricular valves: study in the chick embryo, Am J Anat, vol.166, pp.63-72, 1983.

F. J. De-lange, A. F. Moorman, R. H. Anderson, J. Manner, A. T. Soufan et al., Lineage and morphogenetic analysis of the cardiac valves, Circ Res, vol.95, pp.645-654, 2004.

E. Dodou, M. P. Verzi, J. P. Anderson, S. M. Xu, and B. L. Black, Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development, Development, vol.131, pp.3931-3942, 2004.

I. J. Domian, M. Chiravuri, P. Van-der-meer, A. W. Feinberg, X. Shi et al., Generation of functional ventricular heart muscle from mouse ventricular progenitor cells, Science, vol.326, pp.426-429, 2009.

N. C. Dubois, A. M. Craft, P. Sharma, D. A. Elliott, E. G. Stanley et al., SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells, Nat Biotechnol, vol.29, pp.1011-1018, 2011.

S. L. Dunwoodie, T. A. Rodriguez, and R. S. Beddington, Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis, Mech Dev, vol.72, pp.27-40, 1998.

J. A. Efe, S. Hilcove, J. Kim, H. Zhou, K. Ouyang et al., Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy, Nat Cell Biol, vol.13, pp.215-222, 2011.

A. Ferdous, A. Caprioli, M. Iacovino, C. M. Martin, J. Morris et al., Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo, Proc Natl Acad Sci, vol.106, pp.814-819, 2009.

E. Fernandez, Z. Siddiquee, and R. V. Shohet, Apoptosis and proliferation in the neonatal murine heart, Dev Dyn, vol.221, pp.302-310, 2001.

M. C. Fishman and K. R. Chien, Fashioning the vertebrate heart: earliest embryonic decisions, Development, vol.124, pp.2099-2117, 1997.

C. Freund, D. Ward-van-oostwaard, J. Monshouwer-kloots, S. Van-den-brink, M. Van-rooijen et al., Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells, Stem Cells, vol.26, pp.724-733, 2008.

M. B. Furtado, C. Biben, H. Shiratori, H. Hamada, and R. P. Harvey, Characterization of Pitx2c expression in the mouse heart using a reporter transgene, Dev Dyn, vol.240, pp.195-203, 2011.

D. Galli, J. N. Dominguez, S. Zaffran, A. Munk, N. A. Brown et al., Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed, Development, vol.135, pp.1157-1167, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311155

D. Galli, A. Innocenzi, L. Staszewsky, L. Zanetta, M. Sampaolesi et al., Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells, Arterioscler Thromb Vasc Biol, vol.25, pp.692-697, 2005.

B. G. Galvez, M. Sampaolesi, A. Barbuti, A. Crespi, D. Covarello et al., Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle, Cell Death Differ, vol.15, pp.1417-1428, 2008.

A. C. Gittenberger-de-groot, E. A. Mahtab, N. D. Hahurij, L. J. Wisse, M. C. Deruiter et al., Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system, Anat Rec (Hoboken), vol.290, pp.115-122, 2007.

R. G. Gourdie, Y. Wei, D. Kim, S. C. Klatt, and T. Mikawa, Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers, Proc Natl Acad Sci, vol.95, pp.6815-6818, 1998.

J. Grego-bessa, L. Luna-zurita, G. Del-monte, V. Bolos, P. Melgar et al., Notch signaling is essential for ventricular chamber development, Dev Cell, vol.12, pp.415-429, 2007.

I. S. Harris and B. L. Black, Development of the endocardium, Pediatr Cardiol, vol.31, pp.391-399, 2010.

T. Heallen, M. Zhang, J. Wang, M. Bonilla-claudio, E. Klysik et al., Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size, Science, vol.332, pp.458-461, 2011.

D. J. Henderson and B. Chaudhry, Getting to the heart of planar cell polarity signaling, Birth Defects Res A Clin Mol Teratol, vol.91, pp.460-467, 2011.

A. Hirschy, F. Schatzmann, E. Ehler, and J. C. Perriard, Establishment of cardiac cytoarchitecture in the developing mouse heart, Dev Biol, vol.289, pp.430-441, 2006.

W. M. Hoogaars, A. Tessari, A. F. Moorman, P. A. De-boer, J. Hagoort et al., The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart, Cardiovasc Res, vol.62, pp.489-499, 2004.

P. C. Hsieh, V. F. Segers, M. E. Davis, C. Macgillivray, J. Gannon et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nat Med, vol.13, pp.970-974, 2007.

M. Ieda, J. D. Fu, P. Delgado-olguin, V. Vedantham, Y. Hayashi et al., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, vol.142, pp.375-386, 2010.

M. Ieda, T. Tsuchihashi, K. N. Ivey, R. S. Ross, T. T. Hong et al., Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling, Dev Cell, vol.16, pp.233-244, 2009.

Y. Ishii, J. D. Langberg, R. Hurtado, S. Lee, and T. Mikawa, Induction of proepicardial marker gene expression by the liver bud, Development, vol.134, pp.3627-3637, 2007.

X. Jiang, D. H. Rowitch, P. Soriano, A. P. Mcmahon, and H. M. Sucov, Fate of the mammalian cardiac neural crest, Development, vol.127, pp.1607-1616, 2000.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya et al., Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, Nature, vol.464, pp.606-609, 2010.

M. H. Kaufman and V. Navaratnam, Early differentiation of the heart in mouse embryos, J Anat, vol.133, pp.235-246, 1981.

R. G. Kelly, N. A. Brown, and M. E. Buckingham, The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm, Dev Cell, vol.1, pp.435-440, 2001.

S. J. Kinder, T. E. Tsang, G. A. Quinlan, A. K. Hadjantonakis, A. Nagy et al., The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo, Development, vol.126, pp.4691-4701, 1999.

M. L. Kirby, T. F. Gale, and D. E. Stewart, Neural crest cells contribute to normal aorticopulmonary septation, Science, vol.220, pp.1059-1061, 1983.

S. Kitajima, S. Miyagawa-tomita, T. Inoue, J. Kanno, and Y. Saga, Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system, Dev Dyn, vol.235, pp.395-402, 2006.

A. Klaus, Y. Saga, M. M. Taketo, E. Tzahor, and W. Birchmeier, Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis, Proc Natl Acad Sci, vol.104, pp.18531-18536, 2007.

G. Y. Koh, M. G. Klug, M. H. Soonpaa, and L. J. Field, Differentiation and long-term survival of C2C12 myoblast grafts in heart, J Clin Invest, vol.92, pp.1548-1554, 1993.

J. A. Kreidberg, H. Sariola, J. M. Loring, M. Maeda, J. Pelletier et al., WT-1 is required for early kidney development, Cell, vol.74, pp.679-691, 1993.

T. Kubin, J. Poling, S. Kostin, P. Gajawada, S. Hein et al., Oncostatin m is a major mediator of cardiomyocyte dedifferentiation and remodeling, Cell Stem Cell, vol.9, pp.420-432, 2011.

C. Kwon, J. Arnold, E. C. Hsiao, M. M. Taketo, B. R. Conklin et al., Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors, Proc Natl Acad Sci, vol.104, pp.10894-10899, 2007.

M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nat Biotechnol, vol.25, pp.1015-1024, 2007.

M. A. Laflamme and C. E. Murry, Regenerating the heart, Nat Biotechnol, vol.23, pp.845-856, 2005.

W. H. Lamers, D. Jong, F. , D. Groot, I. J. Moorman et al., The development of the avian conduction system, a review, Eur J Morphol, vol.29, pp.233-253, 1991.

K. L. Laugwitz, A. Moretti, J. Lam, P. Gruber, Y. Chen et al., Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature, vol.433, pp.647-653, 2005.

K. A. Lawson and R. A. Pedersen, Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse, Development, vol.101, pp.627-652, 1987.

L. Lievre, C. S. , L. Douarin, and N. M. , Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos, J Embryol Exp Morphol, vol.34, pp.125-154, 1975.

F. Lescroart, R. G. Kelly, L. Garrec, J. F. Nicolas, J. F. Meilhac et al., Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo, Development, vol.137, pp.3269-3279, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00567073

M. Leu, E. Ehler, and J. C. Perriard, Characterisation of postnatal growth of the murine heart, Anat Embryol (Berl), vol.204, pp.217-224, 2001.

P. Li, S. Cavallero, Y. Gu, T. H. Chen, J. Hughes et al., IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development, Development, vol.138, pp.1795-1805, 2011.

L. Lin, L. Cui, W. Zhou, D. Dufort, X. Zhang et al., Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis, Proc Natl Acad Sci, vol.104, pp.9313-9318, 2007.

K. K. Linask, K. A. Knudsen, and Y. H. Gui, N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development, Dev Biol, vol.185, pp.148-164, 1997.

R. C. Lindsley, J. G. Gill, T. L. Murphy, E. M. Langer, M. Cai et al., Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs, Cell Stem Cell, vol.3, pp.55-68, 2008.

T. J. Lints, L. M. Parsons, L. Hartley, I. Lyons, and R. P. Harvey, Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants, Development, vol.119, p.969, 1993.

F. S. Loffredo, M. L. Steinhauser, J. Gannon, and R. T. Lee, Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair, Cell Stem Cell, vol.8, pp.389-398, 2011.

Q. Ma, B. Zhou, and W. T. Pu, Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4based reporter of Cre activity, Dev Biol, vol.323, pp.98-104, 2008.

J. Manner, Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium, Anat Rec, vol.255, pp.212-226, 1999.

C. M. Martin, A. P. Meeson, S. M. Robertson, T. J. Hawke, J. A. Richardson et al., Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart, Dev Biol, vol.265, pp.262-275, 2004.

K. Matsuura, T. Nagai, N. Nishigaki, T. Oyama, J. Nishi et al., Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes, J Biol Chem, vol.279, pp.11384-11391, 2004.

J. R. Mcmullen, T. Shioi, W. Y. Huang, L. Zhang, O. Tarnavski et al., The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway, J Biol Chem, vol.279, pp.4782-4793, 2004.

S. M. Meilhac, M. Esner, R. G. Kelly, J. F. Nicolas, and M. E. Buckingham, The clonal origin of myocardial cells in different regions of the embryonic mouse heart, Dev Cell, vol.6, pp.685-698, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311144

S. M. Meilhac, M. Esner, M. Kerszberg, J. E. Moss, and M. E. Buckingham, Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis, J Cell Biol, vol.164, pp.97-109, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-01573451

S. M. Meilhac, R. G. Kelly, D. Rocancourt, E. , S. Nicolas et al., A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart, Development, vol.130, pp.3877-3889, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-00460887

P. Menasche, A. A. Hagege, J. T. Vilquin, M. Desnos, E. Abergel et al., Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction, J Am Coll Cardiol, vol.41, pp.1078-1083, 2003.

E. Merki, M. Zamora, A. Raya, Y. Kawakami, J. Wang et al., Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation, Proc Natl Acad Sci, vol.102, pp.18455-18460, 2005.

D. Meyer and C. Birchmeier, Multiple essential functions of neuregulin in development, Nature, vol.378, pp.386-390, 1995.

T. Mikawa and R. G. Gourdie, Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ, Dev Biol, vol.174, pp.221-232, 1996.

M. Milgrom-hoffman, Z. Harrelson, N. Ferrara, E. Zelzer, S. M. Evans et al., The heart endocardium is derived from vascular endothelial progenitors, Development, vol.138, pp.4777-4787, 2011.

L. Miquerol, N. Moreno-rascon, S. Beyer, L. Dupays, S. M. Meilhac et al., Biphasic development of the mammalian ventricular conduction system, Circ Res, vol.107, pp.153-161, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566990

M. T. Mommersteeg, J. N. Dominguez, C. Wiese, J. Norden, C. De-gier-de-vries et al., The sinus venosus progenitors separate and diversify from the first and second heart fields early in development, Cardiovasc Res, vol.87, pp.92-101, 2010.

A. Moretti, L. Caron, A. Nakano, J. T. Lam, A. Bernshausen et al., Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell, vol.127, pp.1151-1165, 2006.

C. Mummery, D. Ward-van-oostwaard, P. Doevendans, R. Spijker, S. Van-den-brink et al., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells, Circulation, vol.107, pp.2733-2740, 2003.

C. L. Mummery, R. P. Davis, and J. E. Krieger, Challenges in using stem cells for cardiac repair, Sci Transl Med, vol.2, pp.27-44, 2010.

C. E. Murry, M. H. Soonpaa, H. Reinecke, H. Nakajima, H. O. Nakajima et al., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature, vol.428, pp.664-668, 2004.

K. Nakajima, M. Inagawa, C. Uchida, K. Okada, S. Tane et al., Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway, Development, vol.138, pp.1771-1782, 2011.

T. J. Nelson, A. Martinez-fernandez, S. Yamada, C. Perez-terzic, Y. Ikeda et al., Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells, Circulation, vol.120, pp.408-416, 2009.

K. Nishii and Y. Shibata, Mode and determination of the initial contraction stage in the mouse embryo heart, Anat Embryol (Berl), vol.211, pp.95-100, 2006.

H. Oh, S. B. Bradfute, T. D. Gallardo, T. Nakamura, V. Gaussin et al., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, Proc Natl Acad Sci, vol.100, pp.12313-12318, 2003.

D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson et al., Bone marrow cells regenerate infarcted myocardium, Nature, vol.410, pp.701-705, 2001.

X. Peng, X. Wu, J. E. Druso, H. Wei, A. Y. Park et al., Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice, Proc Natl Acad Sci, vol.105, pp.6638-6643, 2008.

J. M. Perez-pomares, A. Phelps, M. Sedmerova, and A. Wessels, Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium, Dev Dyn, vol.227, pp.56-68, 2003.

E. R. Porrello, A. I. Mahmoud, E. Simpson, J. A. Hill, J. A. Richardson et al., Transient regenerative potential of the neonatal mouse heart, Science, vol.331, pp.1078-1080, 2011.

K. D. Poss, L. G. Wilson, and M. T. Keating, Heart regeneration in zebrafish, Science, vol.298, pp.2188-2190, 2002.

O. W. Prall, M. K. Menon, M. J. Solloway, Y. Watanabe, S. Zaffran et al., An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation, Cell, vol.128, pp.947-959, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00159578

T. L. Rasmussen, J. Kweon, M. A. Diekmann, F. Belema-bedada, Q. Song et al., ER71 directs mesodermal fate decisions during embryogenesis, Development, vol.138, pp.4801-4812, 2011.

K. Red-horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, Coronary arteries form by developmental reprogramming of venous cells, Nature, vol.464, pp.549-553, 2010.

H. Reinecke, E. Minami, V. Poppa, and C. E. Murry, Evidence for fusion between cardiac and skeletal muscle cells, Circ Res, vol.94, pp.56-60, 2004.

C. A. Risebro, R. G. Searles, A. A. Melville, E. Ehler, J. N. Shah et al., Prox1 maintains muscle structure and growth in the developing heart, Development, vol.136, pp.495-505, 2009.

F. Rochais, M. Dandonneau, K. Mesbah, T. Jarry, M. G. Mattei et al., Hes1 is expressed in the second heart field and is required for outflow tract development, PLoS One, vol.4, p.6267, 2009.

W. Roell, Z. J. Lu, W. Bloch, S. Siedner, K. Tiemann et al., Cellular cardiomyoplasty improves survival after myocardial injury, Circulation, vol.105, pp.2435-2441, 2002.

M. Rubart, K. B. Pasumarthi, H. Nakajima, M. H. Soonpaa, H. O. Nakajima et al., Physiological coupling of donor and host cardiomyocytes after cellular transplantation, Circ Res, vol.92, pp.1217-1224, 2003.

M. Rubart, M. H. Soonpaa, H. Nakajima, and L. J. Field, Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation, J Clin Invest, vol.114, pp.775-783, 2004.

L. Ryckebusch, Z. Wang, N. Bertrand, S. C. Lin, C. X. Schwartz et al., Retinoic acid deficiency alters second heart field formation, Proc Natl Acad Sci, vol.105, pp.2913-2918, 2008.

Y. Saga, S. Kitajima, and S. Miyagawa-tomita, Mesp1 expression is the earliest sign of cardiovascular development, Trends Cardiovasc Med, vol.10, pp.345-352, 2000.

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, pp.3437-3447, 1999.

D. A. Sassoon, I. Garner, and M. Buckingham, Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo, Development, vol.104, pp.155-164, 1988.

I. Schulte, J. Schlueter, R. Abu-issa, T. Brand, and J. Manner, Morphological and molecular leftright asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos, Dev Dyn, vol.236, pp.684-695, 2007.

D. Sedmera and R. P. Thompson, Myocyte proliferation in the developing heart, Dev Dyn, vol.240, pp.1322-1334, 2011.

S. Y. Shai, A. E. Harpf, C. J. Babbitt, M. C. Jordan, M. C. Fishbein et al., Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure, Circ Res, vol.90, pp.458-464, 2002.

N. Smart, S. Bollini, K. N. Dube, J. M. Vieira, B. Zhou et al., De novo cardiomyocytes from within the activated adult heart after injury, Nature, vol.474, pp.640-644, 2011.

P. C. Smits, R. J. Van-geuns, D. Poldermans, M. Bountioukos, E. E. Onderwater et al., Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up, J Am Coll Cardiol, vol.42, pp.2063-2069, 2003.

P. Snider, K. N. Standley, J. Wang, M. Azhar, T. Doetschman et al., Origin of cardiac fibroblasts and the role of periostin, Circ Res, vol.105, pp.934-947, 2009.

M. H. Soonpaa, K. K. Kim, L. Pajak, M. Franklin, and L. J. Field, Cardiomyocyte DNA synthesis and binucleation during murine development, Am J Physiol, vol.271, pp.2183-2189, 1996.

M. H. Soonpaa, G. Y. Koh, M. G. Klug, and L. J. Field, Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium, Science, vol.264, pp.98-101, 1994.

K. Stankunas, C. T. Hang, Z. Y. Tsun, H. Chen, N. V. Lee et al., Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis, Dev Cell, vol.14, pp.298-311, 2008.

E. G. Stanley, C. Biben, A. Elefanty, L. Barnett, F. Koentgen et al., Efficient Cremediated deletion in cardiac progenitor cells conferred by a 3 0 UTR-ires-Cre allele of the homeobox gene Nkx2-5, Int J Dev Biol, vol.46, pp.431-439, 2002.

H. M. Sucov, Y. Gu, S. Thomas, P. Li, and M. Pashmforoush, Epicardial control of myocardial proliferation and morphogenesis, Pediatr Cardiol, vol.30, pp.617-625, 2009.
DOI : 10.1007/s00246-009-9391-8

Y. Sun, X. Liang, N. Najafi, M. Cass, L. Lin et al., Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells, Dev Biol, vol.304, pp.286-296, 2007.

J. K. Takeuchi and B. G. Bruneau, Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors, Nature, vol.459, pp.708-711, 2009.
DOI : 10.1038/nature08039

URL : http://europepmc.org/articles/pmc2728356?pdf=render

P. P. Tam, M. Parameswaran, S. J. Kinder, and R. P. Weinberger, The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation, Development, vol.124, pp.1631-1642, 1997.

R. Terada, S. Warren, J. T. Lu, K. R. Chien, A. Wessels et al., Ablation of Nkx2-5 at midembryonic stage results in premature lethality and cardiac malformation, Cardiovasc Res, vol.91, pp.289-299, 2011.

M. Theveniau-ruissy, M. Dandonneau, K. Mesbah, O. Ghez, M. G. Mattei et al., The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning, Circ Res, vol.103, pp.142-148, 2008.

R. P. Thompson, J. R. Lindroth, and M. Wong, Regional differences in DNA-synthetic activity in the preseptation myocardium of the chick, pp.219-234, 1990.

E. Tzouanacou, A. Wegener, F. J. Wymeersch, V. Wilson, and J. F. Nicolas, Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis, Dev Cell, vol.17, pp.365-376, 2009.

G. Van-den-berg, R. Abu-issa, B. A. De-boer, M. R. Hutson, P. A. De-boer et al., A caudal proliferating growth center contributes to both poles of the forming heart tube, Circ Res, vol.104, pp.179-188, 2009.

L. W. Van-laake, R. Passier, K. Den-ouden, C. Schreurs, J. Monshouwer-kloots et al., Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size, Stem Cell Res, vol.3, pp.106-112, 2009.

B. Van-wijk, G. Van-den-berg, R. Abu-issa, P. Barnett, S. Van-der-velden et al., Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein-and fibroblast growth factor-signaling pathways, Circ Res, vol.105, pp.431-441, 2009.

M. P. Verzi, D. J. Mcculley, D. Val, S. Dodou, E. Black et al., The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field, Dev Biol, vol.287, pp.134-145, 2005.

S. D. Vincent and M. E. Buckingham, How to make a heart: the origin and regulation of cardiac progenitor cells, Curr Top Dev Biol, vol.90, pp.1-41, 2010.

S. Viragh and C. E. Challice, Origin and differentiation of cardiac muscle cells in the mouse, J Ultrastruct Res, vol.42, pp.1-24, 1973.

S. Viragh and C. E. Challice, The origin of the epicardium and the embryonic myocardial circulation in the mouse, Anat Rec, vol.201, pp.157-168, 1981.

K. L. Waldo, M. R. Hutson, C. C. Ward, M. Zdanowicz, H. A. Stadt et al., Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart, Dev Biol, vol.281, pp.78-90, 2005.

C. Ward, H. Stadt, M. Hutson, and M. L. Kirby, Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia, Dev Biol, vol.284, pp.72-83, 2005.

K. T. Weber and C. G. Brilla, Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system, Circulation, vol.83, pp.1849-1865, 1991.

Y. Wei and T. Mikawa, Fate diversity of primitive streak cells during heart field formation in ovo, Dev Dyn, vol.219, pp.505-513, 2000.

M. Wu, C. L. Smith, J. A. Hall, I. Lee, K. Luby-phelps et al., Epicardial spindle orientation controls cell entry into the myocardium, Dev Cell, vol.19, pp.114-125, 2010.
DOI : 10.1016/j.ydbio.2010.05.470

URL : https://doi.org/10.1016/j.ydbio.2010.05.470

M. Xin, Y. Kim, L. B. Sutherland, X. Qi, J. Mcanally et al., Regulation of insulin-like growth factor signaling by yap governs cardiomyocyte proliferation and embryonic heart size, Sci Signal, vol.4, p.70, 2011.
DOI : 10.1126/scisignal.2002278

URL : http://europepmc.org/articles/pmc3440872?pdf=render

H. Xu, M. Morishima, J. N. Wylie, R. J. Schwartz, B. G. Bruneau et al., Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract, Development, vol.131, pp.3217-3227, 2004.

X. Q. Xu, R. Graichen, S. Y. Soo, T. Balakrishnan, S. N. Rahmat et al., Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells, Differentiation, vol.76, pp.958-970, 2008.
DOI : 10.1111/j.1432-0436.2008.00284.x

Y. Yang, J. Y. Min, J. S. Rana, Q. Ke, J. Cai et al., VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells, J Appl Physiol, vol.93, pp.1140-1151, 2002.

S. Zaffran, R. G. Kelly, S. M. Meilhac, M. E. Buckingham, and N. A. Brown, Right ventricular myocardium derives from the anterior heart field, Circ Res, vol.95, pp.261-268, 2004.
DOI : 10.1161/01.res.0000136815.73623.be

URL : https://hal.archives-ouvertes.fr/pasteur-01573448

B. Zhou, Q. Ma, S. Rajagopal, S. M. Wu, I. Domian et al., Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.454, pp.109-113, 2008.

B. Zhou, A. Von-gise, Q. Ma, J. Rivera-feliciano, and W. T. Pu, Nkx2-5-and Isl1-expressing cardiac progenitors contribute to proepicardium, Biochem Biophys Res Commun, vol.375, pp.450-453, 2008.
DOI : 10.1016/j.bbrc.2008.08.044

URL : http://europepmc.org/articles/pmc2610421?pdf=render