J. L. Gaillard, P. Berche, C. Frehel, E. Gouin, and P. Cossart, Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci, Cell, vol.65, pp.1127-1141, 1991.

S. Dramsi, I. Biswas, E. Maguin, L. Braun, and P. Mastroeni, Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family, Molecular Microbiology, vol.16, pp.251-261, 1995.

M. Lecuit, S. Vandormael-pournin, J. Lefort, M. Huerre, and P. Gounon, A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier, Science, vol.292, pp.1722-1725, 2001.

O. Disson, S. Grayo, E. Huillet, G. Nikitas, and F. Langa-vives, Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.455, pp.1114-1118, 2008.

M. Lecuit, D. Nelson, S. Smith, H. Khun, and M. Huerre, Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin, Proceedings of the National Academy of Sciences, vol.101, p.6152, 2004.

G. Nikitas, C. Deschamps, O. Disson, T. Niault, and P. Cossart, Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin, J Exp Med, vol.208, pp.2263-2277, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02040395

P. Cossart, M. F. Vicente, J. Mengaud, F. Baquero, and J. C. Perez-diaz, Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infection and Immunity, vol.57, pp.3629-3636, 1989.

W. Goebel, S. Kathariou, M. Kuhn, Z. Sokolovic, and J. Kreft, Hemolysin from Listeria-biochemistry, genetics and function in pathogenesis, Infection, vol.16, pp.149-156, 1988.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, and H. Ohayon, L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, pp.521-531, 1992.

Y. Yoshikawa, M. Ogawa, T. Hain, M. Yoshida, and M. Fukumatsu, Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nature Cell Biology, vol.11, pp.1233-1240, 2009.

M. Leimeister-wä-chter, E. Domann, and T. Chakraborty, The expression of virulence genes in Listeria monocytogenes is thermoregulated, J Bacteriol, vol.174, pp.947-952, 1992.

J. Mengaud, S. Dramsi, E. Gouin, J. A. Vazquez-boland, and G. Milon, Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated, Molecular Microbiology, vol.5, pp.2273-2283, 1991.

A. De-las-heras, R. J. Cain, M. K. Bielecka, and J. A. Vázquez-boland, Regulation of Listeria virulence: PrfA master and commander, Current Opinion in Microbiology, vol.14, pp.118-127, 2011.

A. Toledo-arana, O. Dussurget, G. Nikitas, N. Sesto, and H. Guet-revillet, The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.459, pp.950-956, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01901828

A. P. Macgowan, R. J. Marshall, I. M. Mackay, and D. S. Reeves, Listeria faecal carriage by renal transplant recipients, haemodialysis patients and patients in general practice: its relation to season, drug therapy, foreign travel, animal exposure and diet, Epidemiol Infect, vol.106, pp.157-166, 1991.

K. Grif, G. Patscheider, M. P. Dierich, and F. Allerberger, Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey, Eur J Clin Microbiol Infect Dis, vol.22, pp.16-20, 2003.

R. Ivanek, Y. T. Gröhn, and M. Wiedmann, Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling, Foodborne Pathog Dis, vol.3, pp.319-336, 2007.

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and L. Hm, Microbial biofilms, Annu Rev Microbiol, vol.49, pp.711-745, 1995.

B. Carpentier and O. Cerf, Review-Persistence of Listeria monocytogenes in food industry equipment and premises, International Journal of Food Microbiology, vol.145, pp.1-8, 2011.

A. Rieu, S. Weidmann, D. Garmyn, P. Piveteau, and J. Guzzo, Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern, Appl Environ Microbiol, vol.73, pp.6125-6133, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00441284

C. Belval, S. Gal, L. Margiewes, S. Garmyn, D. Piveteau et al., Assessment of the roles of LuxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02000985

, Appl Environ Microbiol, vol.72, pp.2644-2650

C. M. Taylor, M. Beresford, H. Epton, D. C. Sigee, and G. Shama, Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence, J Bacteriol, vol.184, pp.621-628, 2002.

R. L. Wilson, L. L. Brown, D. Kirkwood-watts, T. K. Warren, and S. A. Lund, Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence, Infect Immun, vol.74, pp.765-768, 2006.

S. Van-der-veen and T. Abee, HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes, Microbiology, vol.156, pp.3782-3790, 2010.

S. Van-der-veen and T. Abee, Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA, Appl Environ Microbiol, vol.76, pp.1992-1995, 2010.

S. Van-der-veen and T. Abee, Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance, Appl Environ Microbiol, vol.76, pp.7854-7860, 2010.

K. P. Lemon, N. E. Freitag, and R. Kolter, The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes, Journal of Bacteriology, vol.192, pp.3969-3976, 2010.

Q. Zhou, F. Feng, L. Wang, X. Feng, and X. Yin, Virulence Regulator PrfA is Essential for Biofilm Formation in Listeria monocytogenes but not in Listeria innocua, Curr Microbiol, vol.63, pp.186-192, 2011.

K. Kjaergaard, M. A. Schembri, H. Hasman, and P. Klemm, Antigen 43 from Escherichia coli induces inter-and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens, Journal of Bacteriology, vol.182, pp.4789-4796, 2000.

T. J. Wells, J. J. Tree, G. C. Ulett, and M. A. Schembri, Autotransporter proteins: novel targets at the bacterial cell surface, FEMS Microbiology Letters, vol.274, pp.163-172, 2007.

J. Bohne, Z. Sokolovic, and W. Goebel, Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes, Molecular Microbiology, vol.11, pp.1141-1150, 1994.

M. D. Welch, J. Rosenblatt, J. Skoble, D. A. Portnoy, and T. J. Mitchison, Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation, Science, vol.281, pp.105-108, 1998.

G. Meng, N. Spahich, R. Kenjale, G. Waksman, S. Geme et al., Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation, The EMBO Journal, vol.30, pp.3864-3874, 2011.

L. Braun, S. Dramsi, P. Dehoux, H. Bierne, and G. Lindahl, InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association, Molecular Microbiology, vol.25, pp.285-294, 1997.

I. Lasa, V. David, E. Gouin, J. B. Marchand, and P. Cossart, The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator, Molecular Microbiology, vol.18, pp.425-436, 1995.

I. Lasa, E. Gouin, M. Goethals, K. Vancompernolle, and V. David, Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes, EMBO J, vol.16, pp.1531-1540, 1997.

S. Pistor, T. Chakraborty, U. Walter, and J. Wehland, The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins, Curr Biol, vol.5, pp.517-525, 1995.

G. A. Smith, J. A. Theriot, and D. A. Portnoy, The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin, J Cell Biol, vol.135, pp.647-660, 1996.

S. Pistor, L. Gröbe, A. S. Sechi, E. Domann, and B. Gerstel, Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex, J Cell Sci, vol.113, pp.3277-3287, 2000.

J. A. Theriot, J. Rosenblatt, D. A. Portnoy, P. J. Goldschmidt-clermont, and T. J. Mitchison, Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts, Cell, vol.76, pp.505-517, 1994.

T. Chakraborty, F. Ebel, E. Domann, K. Niebuhr, and B. Gerstel, A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells, EMBO J, vol.14, pp.1314-1321, 1995.

J. Skoble, D. A. Portnoy, and M. D. Welch, Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility, J Cell Biol, vol.150, pp.527-538, 2000.

R. Boujemaa-paterski, E. Gouin, G. Hansen, S. Samarin, L. Clainche et al., Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex, Biochemistry, vol.40, pp.11390-11404, 2001.

J. A. Melton-witt, S. M. Rafelski, D. A. Portnoy, and A. I. Bakardjiev, Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs, Infection and Immunity, vol.80, pp.730-732, 2011.

J. Hardy, J. J. Margolis, and C. H. Contag, Induced biliary excretion of Listeria monocytogenes, Infection and Immunity, vol.74, pp.1819-1827, 2006.

M. Pentecost, G. Otto, J. A. Theriot, and M. R. Amieva, Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion, PLoS Pathog, vol.2, p.3, 2006.

G. Franciosa, A. Maugliani, C. Scalfaro, F. Floridi, and P. Aureli, Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates, Int J Immunopathol Pharmacol, vol.22, pp.183-193, 2009.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc Natl Acad Sci, vol.108, pp.19484-19491, 2011.

C. Kocks, R. Hellio, P. Gounon, H. Ohayon, and P. Cossart, Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly, J Cell Sci, vol.105, pp.699-710, 1993.

P. Mourrain, I. Lasa, A. Gautreau, E. Gouin, and A. Pugsley, ActA is a dimer, Proc Natl Acad Sci, vol.94, pp.10034-10039, 1997.

G. Cicchetti, P. Maurer, P. Wagener, and C. Kocks, Actin and phosphoinositide binding by the ActA protein of the bacterial pathogen Listeria monocytogenes, J Biol Chem, vol.274, pp.33616-33626, 1999.

E. Gouin, P. Dehoux, J. Mengaud, C. Kocks, and P. Cossart, iactA of Listeria ivanovii, although distantly related to Listeria monocytogenes actA, restores actin tail formation in an L. monocytogenes actA mutant, Infection and Immunity, vol.63, pp.2729-2737, 1995.

M. Conter, A. Vergara, D. Ciccio, P. Zanardi, E. Ghidini et al., Polymorphism of actA gene is not related to in vitro virulence of Listeria monocytogenes, International Journal of Food Microbiology, vol.137, pp.100-105, 2010.

M. Suárez, B. González-zorn, Y. Vega, I. Chico-calero, and J. A. Vázquez-boland, A role for ActA in epithelial cell invasion by Listeria monocytogenes, Cellular Microbiology, vol.3, pp.853-864, 2001.

A. Holch, C. T. Gottlieb, M. H. Larsen, H. Ingmer, and L. Gram, Poor invasion of trophoblastic cells but normal plaque formation in fibroblastic cells despite actA deletion in a group of Listeria monocytogenes strains persisting in some food processing environments, Appl Environ Microbiol, vol.76, pp.3391-3397, 2010.

M. P. Stevens, T. J. Humphrey, and D. J. Maskell, Molecular insights into farm animal and zoonotic Salmonella infections, Philos Trans R Soc Lond, B, Biol Sci, vol.364, pp.2709-2723, 2009.

R. Mundy, T. T. Macdonald, G. Dougan, G. Frankel, and S. Wiles, Citrobacter rodentium of mice and man, Cell Microbiol, vol.7, pp.1697-1706, 2005.

W. A. Ferens and C. J. Hovde, Escherichia coli O157:H7: animal reservoir and sources of human infection, Foodborne Pathog Dis, vol.8, pp.465-487, 2011.

D. Hermans, F. Pasmans, M. Heyndrickx, F. Van-immerseel, and A. Martel, A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut, Crit Rev Microbiol, vol.38, pp.17-29, 2012.

M. Lecuit, J. Sonnenburg, P. Cossart, and J. Gordon, Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model, Journal of Biological Chemistry, vol.282, p.15065, 2007.

M. P. Doyle and M. C. Erickson, Reducing the carriage of foodborne pathogens in livestock and poultry, Poult Sci, vol.85, pp.960-973, 2006.

M. Chase-topping, D. Gally, C. Low, L. Matthews, and M. Woolhouse, Supershedding and the link between human infection and livestock carriage of Escherichia coli O157, Nat Rev Micro, vol.6, pp.904-912, 2008.

K. Wernars, K. Heuvelman, S. Notermans, E. Domann, and M. Leimeister-wä-chter, Suitability of the prfA gene, which encodes a regulator of virulence genes in Listeria monocytogenes, in the identification of pathogenic Listeria spp, Appl Environ Microbiol, vol.58, pp.765-768, 1992.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, and A. Amend, Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

E. Gouin, M. Adib-conquy, D. Balestrino, M. Nahori, and V. Villiers, The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I{kappa}B kinase subunit IKK{alpha}, Proc Natl Acad Sci, vol.107, pp.17333-17338, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901815

D. Balestrino, M. A. Hamon, L. Dortet, M. Nahori, and J. Pizarro-cerda, Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes, Applied and Environmental Microbiology, vol.76, pp.3625-3636, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901824

P. Lauer, M. Chow, M. J. Loessner, D. A. Portnoy, and R. Calendar, Construction, characterization, and use of two Listeria monocytogenes sitespecific phage integration vectors, Journal of Bacteriology, vol.184, pp.4177-4186, 2002.

M. Arnaud, A. Chastanet, and M. Débarbouillé, New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria, Appl Environ Microbiol, vol.70, pp.6887-6891, 2004.

C. Kocks, J. B. Marchand, E. Gouin, H. Hauteville, and P. J. Sansonetti, The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively, Molecular Microbiology, vol.18, pp.413-423, 1995.

O. Disson, G. Nikitas, S. Grayo, O. Dussurget, and P. Cossart, Modeling human listeriosis in natural and genetically engineered animals, Nat Protoc, vol.4, pp.799-810, 2009.

C. Archambaud, M. Nahori, G. Soubigou, C. Bécavin, and L. Laval, Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.109, pp.16684-16689, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003361

S. Dramsi, S. Lévi, A. Triller, and P. Cossart, Entry of Listeria monocytogenes into neurons occurs by cell-to-cell spread: an in vitro study, Infection and Immunity, vol.66, pp.4461-4468, 1998.

E. Friederich, E. Gouin, R. Hellio, C. Kocks, and P. Cossart, Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function, EMBO J, vol.14, pp.2731-2744, 1995.

C. Archambaud, E. Gouin, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes, Molecular Microbiology, vol.56, pp.383-396, 2005.