, Leishmaniasis in high-burden countries: an epidemiological update based on data reported in 2014, Wkly. Epidemiol. Rec, vol.91, pp.287-296, 2016.

N. Shakya, P. Bajpai, and S. Gupta, Therapeutic switching in Leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs, J Parasit Dis, vol.35, pp.104-112, 2011.

R. L. Charlton, B. Rossi-bergmann, P. W. Denny, and P. Steel, Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art, Parasitology, vol.145, pp.219-236, 2018.

G. M. Welay, A. , K. A. Dachew, and B. A. , Visceral leishmaniasis treatment outcome and its determinants in northwest Ethiopia, Epidemiol Health, vol.39, p.2017001, 2016.

S. Sundar, J. Chakravarty, and . Antimony, Int J Environ Res Public Health, vol.7, pp.4267-4277, 2010.

A. Ponte-sucre, Drug resistance and treatment failure in leishmaniasis: A 21st century challenge, PLoS Negl Trop Dis, vol.11, p.6052, 2017.

C. T. Trinconi, J. Q. Reimão, J. K. Yokoyama-yasunaka, D. C. Miguel, and S. R. Uliana, Combination therapy with tamoxifen and amphotericin B in experimental cutaneous leishmaniasis, Antimicrob. Agents Chemother, vol.58, pp.2608-2613, 2014.

S. Sundar, Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an openlabel, non-inferiority, randomised controlled trial, Lancet, vol.377, pp.477-486, 2011.

T. R. De-moura, Cross-resistance of Leishmania infantum isolates to nitric oxide from patients refractory to antimony treatment, and greater tolerance to antileishmanial responses by macrophages, Parasitol. Res, vol.115, pp.713-721, 2016.

D. Kumar, A. Kulshrestha, R. Singh, and P. Salotra, In vitro susceptibility of field isolates of Leishmania donovani to Miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity, Antimicrob. Agents Chemother, vol.53, pp.835-838, 2009.

R. García-hernández, J. I. Manzano, S. Castanys, and F. Gamarro, Leishmania donovani develops resistance to drug combinations, PLoS Negl Trop Dis, vol.6, p.1974, 2012.

C. Forestier, G. F. Späth, E. Prina, and S. Dasari, Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process, Microb. Pathog, vol.88, pp.103-108, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01433404

P. Prieto-barja, Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani, Nat Ecol Evol, vol.1, pp.1961-1969, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02107201

D. Moreira, Impact of continuous axenic cultivation in Leishmania infantum virulence, PLoS Negl Trop Dis, vol.6, p.1469, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00691462

G. D. Melo, New insights into experimental visceral leishmaniasis: Real-time in vivo imaging of Leishmania donovani virulence, PLoS Negl Trop Dis, vol.11, p.5924, 2017.

P. Pescher, T. Blisnick, P. Bastin, and G. F. Späth, Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation, Cell. Microbiol, vol.13, pp.978-991, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01433560

M. De-rycker, Comparison of a high-throughput high-content intracellular Leishmania donovani assay with an axenic amastigote assay, Antimicrob. Agents Chemother, vol.57, pp.2913-2922, 2013.

I. Peña, New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource, Sci Rep, vol.5, p.8771, 2015.

N. Aulner, High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to antileishmanial drug discovery, PLoS Negl Trop Dis, vol.7, p.2154, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01433415

S. Goyard, An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans, Mol. Biochem. Parasitol, vol.130, pp.31-42, 2003.

M. Vermeersch, In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences, Antimicrob. Agents Chemother, vol.53, pp.3855-3859, 2009.

M. Ephros, A. Bitnun, P. Shaked, E. Waldman, and D. Zilberstein, Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes, Antimicrob. Agents Chemother, vol.43, pp.278-282, 1999.

J. L. Siqueira-neto, Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds, PLoS Negl Trop Dis, vol.4, p.675, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00696809

S. Tsuchiya, Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), Int. J. Cancer, vol.26, pp.171-176, 1980.

W. Chanput, J. J. Mes, and H. J. Wichers, THP-1 cell line: an in vitro cell model for immune modulation approach, Int. Immunopharmacol, vol.23, pp.37-45, 2014.

H. Bosshart and M. Heinzelmann, THP-1 cells as a model for human monocytes, Ann Transl Med, vol.4, p.438, 2016.

A. Schildberger, E. Rossmanith, T. Eichhorn, K. Strassl, and V. Weber, Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide, Mediators Inflamm, p.697972, 2013.

A. Adey, The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line, Nature, vol.500, pp.207-211, 2013.

J. J. Landry, The genomic and transcriptomic landscape of a HeLa cell line, Bethesda), vol.3, pp.1213-1224, 2013.

A. Frattini, High variability of genomic instability and gene expression profiling in different HeLa clones, Sci Rep, vol.5, p.15377, 2015.

P. Horvath, Screening out irrelevant cell-based models of disease, Nat Rev Drug Discov, vol.15, pp.751-769, 2016.

S. Gannavaram, Whole genome sequencing of live attenuated Leishmania donovani parasites reveals novel biomarkers of attenuation and enables product characterization, Sci Rep, vol.7, p.4718, 2017.

P. B. Joshi, B. L. Kelly, S. Kamhawi, D. L. Sacks, and W. R. Mcmaster, Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor, Mol. Biochem. Parasitol, vol.120, pp.33-40, 2002.

B. Papadopoulou, Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination, Infect. Immun, vol.70, pp.62-68, 2002.

E. Barak, Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response, Mol. Biochem. Parasitol, vol.141, pp.99-108, 2005.

S. Khare, Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness, Nature, vol.537, pp.229-233, 2016.

P. Tsigankov, Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends, Mol. Cell Proteomics, vol.13, pp.1787-1799, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01433413

P. Tsigankov, P. F. Gherardini, M. Helmer-citterich, and D. Zilberstein, What has proteomics taught us about Leishmania development?, Parasitology, vol.139, pp.1146-1157, 2012.

G. F. Späth, S. Drini, and N. Rachidi, A touch of Zen: post-translational regulation of the Leishmania stress response, Cell. Microbiol, vol.17, pp.632-638, 2015.

P. S. Doyle, J. C. Engel, P. F. Pimenta, P. P. Da-silva, and D. M. Dwyer, Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C, Exp. Parasitol, vol.73, pp.326-334, 1991.

D. Tegazzini, A Replicative In Vitro Assay for Drug Discovery against Leishmania donovani, Antimicrob. Agents Chemother, vol.60, pp.3524-3532, 2016.

G. Palacios, Studies in vitro on infectivity and sensitivity to antileishmanial drugs in New World Leishmania species transfected with the green fluorescent protein, Parasitology, vol.144, pp.1718-1725, 2017.

A. Hefnawy, Importance of secondary screening with clinical isolates for anti-Leishmania drug discovery, Sci Rep, vol.8, p.11765, 2018.

D. J. Gregory, R. Sladek, M. Olivier, and G. Matlashewski, Comparison of the effects of Leishmania major or Leishmania donovani infection on macrophage gene expression, Infect. Immun, vol.76, pp.1186-1192, 2008.

V. Mosimann, A. Neumayr, C. Hatz, and J. A. Blum, Cutaneous leishmaniasis in Switzerland: first experience with species-specific treatment, Infection, vol.41, pp.1177-1182, 2013.

R. Ramanathan, K. R. Talaat, D. P. Fedorko, S. Mahanty, and T. E. Nash, A species-specific approach to the use of non-antimony treatments for cutaneous leishmaniasis, Am. J. Trop. Med. Hyg, vol.84, pp.109-117, 2011.

N. K. Copeland and N. E. Aronson, Leishmaniasis: treatment updates and clinical practice guidelines review, Curr. Opin. Infect. Dis, vol.28, pp.426-437, 2015.

R. Scientific, , vol.9, 2019.

J. Arevalo, Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis, J. Infect. Dis, vol.195, pp.1846-1851, 2007.

C. J. Hodiamont, Species-directed therapy for leishmaniasis in returning travellers: a comprehensive guide, PLoS Negl Trop Dis, vol.8, p.2832, 2014.

S. Lamotte, G. F. Späth, N. Rachidi, and E. Prina, The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery, PLoS Negl Trop Dis, vol.11, p.5480, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570238

L. H. Yuen and R. M. Franzini, Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View, Chembiochem, vol.18, pp.829-836, 2017.

A. B. Macconnell, A. K. Price, and B. M. Paegel, An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening, ACS Comb Sci, vol.19, pp.181-192, 2017.

E. Durieu, From Drug Screening to Target Deconvolution: a Target-Based Drug Discovery Pipeline Using Leishmania Casein Kinase 1 Isoform 2 To Identify Compounds with Antileishmanial Activity, Antimicrob. Agents Chemother, vol.60, pp.2822-2833, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299756