B. Audrain, M. A. Farag, C. M. Ryu, and J. M. Ghigo, Role of bacterial volatile compounds in bacterial biology, FEMS Microbiol. Rev, vol.39, pp.222-233, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02017355

N. Barraud, M. J. Kelso, S. A. Rice, and S. Kjelleberg, Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases, Curr. Pharm. Des, vol.21, pp.31-42, 2014.

N. Barraud, D. Schleheck, J. Klebensberger, J. S. Webb, D. J. Hassett et al., Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal, J. Bacteriol, vol.191, pp.7333-7342, 2009.

N. Barraud, M. V. Storey, Z. P. Moore, J. S. Webb, S. A. Rice et al., Nitric oxide-mediated dispersal in single-and multi-species biofilms of clinically and industrially relevant microorganisms, Microb. Biotechnol, vol.2, pp.370-378, 2009.

E. L. Barrett and H. S. Kwan, Bacterial reduction of trimethylamine oxide, Annu. Rev. Microbiol, vol.39, pp.131-149, 1985.

G. Berg, Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture, Appl. Microbiol. Biotechnol, vol.84, pp.11-18, 2009.

S. P. Bernier, S. Letoffe, M. Delepierre, and J. M. Ghigo, Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria, Mol. Microbiol, vol.81, pp.705-716, 2011.

L. D. Bos, P. J. Sterk, and M. J. Schultz, Volatile metabolites of pathogens: a systematic review, PLoS Pathog, vol.9, p.1003311, 2013.

J. Cepl, A. Blahuskova, F. Cvrckova, M. , and A. , Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation, FEMS Microbiol. Lett, vol.354, pp.126-132, 2014.

Y. Chen, K. Gozzi, F. Yan, and Y. Chai, Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation, MBio, vol.6, p.392, 2015.

N. Dandurishvili, N. Toklikishvili, M. Ovadis, P. Eliashvili, N. Giorgobiani et al., Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants, J. Appl. Microbiol, vol.110, pp.341-352, 2011.

U. Effmert, J. Kalderas, R. Warnke, and B. Piechulla, Volatile mediated interactions between bacteria and fungi in the soil, J. Chem. Ecol, vol.38, pp.665-703, 2012.

L. A. Gallagher and C. Manoil, Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning, J. Bacteriol, vol.183, pp.6207-6214, 2001.

P. Garbeva, C. Hordijk, S. Gerards, and W. Boer, Volatile-mediated interactions between phylogenetically different soil bacteria, Front. Microbiol, vol.5, p.289, 2014.

H. Gurtler, R. Pedersen, U. Anthoni, C. Christophersen, P. H. Nielsen et al., Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a streptomycete with a new rope morphology, J. Antibiot, vol.47, pp.434-439, 1994.

I. Gusarov, K. Shatalin, M. Starodubtseva, and E. Nudler, Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics, Science, vol.325, pp.1380-1384, 2009.

R. D. Heal and A. T. Parsons, Novel intercellular communication system in Escherichia coli that confers antibiotic resistance between physically separated populations, J. Appl. Microbiol, vol.92, pp.1116-1122, 2002.

B. M. Henares, Y. Xu, and E. M. Boon, A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation, Int. J. Mol. Sci, vol.14, pp.16473-16484, 2013.

A. Hinton, Hume ME. Antibacterial activity of the metabolic byproducts of a Veillonella species and Bacteroides fragilis, Anaerobe, vol.1, pp.121-127, 1995.

H. Hirakawa, Y. Inazumi, T. Masaki, T. Hirata, Y. et al., Indole induces the expression of multidrug exporter genes in Escherichia coli, Mol. Microbiol, vol.55, pp.1113-1126, 2005.

M. Kai, M. Haustein, F. Molina, A. Petri, B. Scholz et al., Bacterial volatiles and their action potential, Appl. Microbiol. Biotechnol, vol.81, pp.1001-1012, 2009.

M. Kai, A. Vespermann, and B. Piechulla, The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles, Plant Signal. Behav, vol.3, pp.482-484, 2008.

K. S. Kim, S. Lee, and C. M. Ryu, Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance, Nat. Commun, vol.4, p.1809, 2013.

T. Kurita-ochiai, K. Fukushima, and K. Ochiai, Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production, J. Dent. Res, vol.74, pp.1367-1373, 1995.

J. Lee, C. Attila, S. L. Cirillo, J. D. Cirillo, and T. K. Wood, Indole and 7hydroxyindole diminish Pseudomonas aeruginosa virulence, Microb. Biotechnol, vol.2, pp.75-90, 2009.

J. Lee, X. S. Zhang, M. Hegde, W. E. Bentley, A. Jayaraman et al., Indole cell signaling occurs primarily at low temperatures in Escherichia coli, ISME J, vol.2, pp.1007-1023, 2008.

S. Letoffe, B. Audrain, S. P. Bernier, M. Delepierre, and J. M. Ghigo, Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH, MBio, vol.5, pp.944-957, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02017359

N. Liu, Y. Xu, S. Hossain, N. Huang, D. Coursolle et al., Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi, Biochemistry, vol.51, pp.2087-2099, 2012.

M. Marvasi, C. Chen, M. Carrazana, I. A. Durie, and M. Teplitski, Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express 4, p.42, 2014.

C. Molina-santiago, A. Daddaoua, S. Fillet, E. Duque, and J. L. Ramos, Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance, Environ. Microbiol, vol.16, pp.1267-1281, 2014.

R. Nijland and J. G. Burgess, Bacterial olfaction, Biotechnol. J, vol.5, pp.974-977, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00599454

E. Nikaido, A. Yamaguchi, and K. Nishino, AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals, J. Biol. Chem, vol.283, pp.24245-24253, 2008.

Q. Niu, X. Huang, L. Zhang, J. Xu, D. Yang et al., A Trojan horse mechanism of bacterial pathogenesis against nematodes, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.16631-16636, 2010.

C. M. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. Van-wees et al., Induced systemic resistance by beneficial microbes, Annu. Rev. Phytopathol, vol.52, pp.347-375, 2014.

A. J. Potter, S. P. Kidd, J. L. Edwards, M. L. Falsetta, M. A. Apicella et al., Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells, J. Infect. Dis, vol.199, pp.227-235, 2009.

C. S. Probert, I. Ahmed, T. Khalid, E. Johnson, S. Smith et al., Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases, J. Gastrointestin. Liver Dis, vol.18, pp.337-343, 2009.

Y. A. Que, R. Hazan, B. Strobel, D. Maura, J. He et al., A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria, PLoS ONE, vol.8, p.80140, 2013.

C. M. Ryu, M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei et al., Bacterial volatiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.4927-4932, 2003.

S. Schulz and J. S. Dickschat, Bacterial volatiles: the smell of small organisms, Nat. Prod. Rep, vol.24, pp.814-842, 2007.

P. M. Smith, M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science, vol.341, pp.569-573, 2013.

A. Venkataraman, M. A. Rosenbaum, S. D. Perkins, J. J. Werner, and L. T. Angenent, Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems, Energy Environ. Sci, vol.4, pp.4550-4559, 2011.

A. Venkataraman, M. A. Rosenbaum, J. J. Werner, S. C. Winans, and L. T. Angenent, Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa, ISME J, vol.8, 2014.

K. L. Whiteson, S. Meinardi, Y. W. Lim, R. Schmieder, H. Maughan et al., Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation, ISME J, vol.8, pp.1247-1258, 2014.

D. M. Wrigley, Inhibition of Clostridium perfringens sporulation by Bacteroides fragilis and short-chain fatty acids, Anaerobe, vol.10, pp.295-300, 2004.