B. Mcclintock, The relation of a particular chromosomal element to the development of nucleoli in Zea mays, Zeitschrift f? ur Zellforschung und Mikroskopische Anatomie, vol.2, pp.294-326, 1934.

D. Hernandez-verdun, Structural organization of the nucleolus as a consequence of the dynamics of ribosome biogenesis, The nucleolus. Protein reviews 15, pp.3-28, 2011.

M. Derenzini, G. Pasquinelli, O. Donohue, M. F. Ploton, D. Thiry et al., Structural and functional organization of ribosomal genes within the mammalian cell nucleolus, J Histochem Cytochem, vol.54, pp.131-176, 2006.

R. Voit and I. Grummt, The RNA polymerase I transcription machinery, The nucleolus. Protein reviews 15, pp.107-141, 2011.

G. , M. Caizergues-ferrer, M. Henry, Y. Henras, and A. , Crosstalk between ribosome synthesis and cell cycle progression and its potential implications in human diseases, The nucleolus. Protein reviews 15, pp.157-84, 2011.

A. Kuhn and I. Grummt, Dual role of the nucleolar transcription factor UBF: Trans-activator and antirepressor, Proc Natl Acad Sci, vol.89, p.1502143, 1992.

V. Y. Stefanovsky, G. Pelletier, D. P. Bazett-jones, C. Crane-robinson, and T. Moss, DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules, Nucleid Acids Res, vol.29, p.11470882, 2001.

O. Sullivan, A. C. Sullivan, G. J. Mcstay, and B. , UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat, Mol Cell Biol, vol.22, pp.657-68, 2002.

J. E. Wright, C. Mais, J. L. Prieto, and B. Mcstay, A role for upstream binding factor in organizing ribosomal gene chromatin, Biochem Soc Symp, vol.73, pp.77-84, 2006.

J. J. Gorski, S. Pathak, K. Panov, T. Kasciukovic, T. Panova et al., A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription, EMBO J, vol.26, p.17318177, 2007.

G. Miller, K. I. Panov, J. K. Friedrich, L. Trinkle-mulcahy, A. I. Lamond et al., hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters, EMBO J, vol.20, pp.1373-82, 2001.

J. K. Friedrich, K. I. Panov, P. Cabart, J. Russell, and J. C. Zomerdijk, TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter, J Biol Chem, vol.280, pp.29551-29559, 2005.

B. A. Knutson, J. Luo, J. Ranish, and S. Hahn, Architecture of the Saccharomyces cerevisiae RNA polymerase I core factor complex, Nat Struct Mol Biol, vol.21, pp.810-816, 2014.

R. D. Hontz, S. L. French, M. L. Oakes, P. Tongaonkar, M. Nomura et al., Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30, Mol Cell Biol, vol.28, pp.6709-6728, 2008.

G. Becker, P. B. Grummt, and I. , TTF-I determines the chromatin architecture of the active rDNA promoter, EMBO J, vol.17, p.9606195, 1998.

S. D. Diermeier, A. Rehli, M. Grummt, and I. , Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I-binding sites, PLoS Genet, vol.9, p.24068958, 2013.

J. Diesch, R. D. Hannan, and E. Sanij, Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease, Cell Biosci, vol.4, p.43, 2014.

E. P. Kusnadi, K. M. Hannan, R. J. Hicks, R. D. Hannan, R. B. Pearson et al., Regulation of rDNA transcription in response to growth factors, nutrients and energy, Gene, vol.556, p.25447905, 2015.

N. A. Lyapunova, N. N. Veiko, and L. N. Porokhovnik, Human rDNA genes: Identification of four fractions, their functions and nucleolar location, Proteins of the Nucleolus, pp.95-118, 2013.

R. Santoro, The epigenetics of the nucleolus: Structure and function of active and silent ribosomal RNA genes, The nucleolus. Protein reviews 15, pp.57-82, 2011.

E. Sanij, G. Poortinga, K. Sharkey, S. Hung, T. P. Holloway et al., UBF levels determine the number of active ribosomal RNA genes in mammals, J Cell Biol, vol.183, p.19103806, 2008.

J. Klein and I. Grummt, Cell cycle-dependent regulation of RNA polymerase I transcription: The nucleolar transcription factor UBF is inactive in mitosis and early G1, Proc Natl Acad Sci, vol.96, pp.6096-101, 1999.

T. H. Cheung and T. A. Rando, Molecular regulation of stem cell quiescence, Nat Rev Mol Cell Biol, vol.14, p.23698583, 2013.

M. Yanagida, Cellular quiescence: Are controlling genes conserved?, Trends Cell Biol, vol.19, pp.705-720, 2009.

B. Roche, B. Arcangioli, and R. A. Martienssen, Transcriptional reprogramming in cellular quiescence, RNA Biol, vol.12, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01868271

E. L. Johnson, D. G. Robinson, and H. A. Coller, Widespread changes in mRNA stability contribute to quiescence-specific gene expression patterns in a fibroblast model of quiescence, BMC Genomics, vol.18, p.28143407, 2017.

B. Roche, B. Arcangioli, and R. A. Martienssen, RNA interference is essential for cellular quiescence, Science, vol.354, p.27738016, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01868276

M. Shimanuki, S. Y. Chung, Y. Chikashige, Y. Kawasaki, L. Uehara et al., Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe, Genes Cells, vol.12, p.17535257, 2007.

A. Narla and B. L. Ebert, Ribosomopathies: Human disorders of ribosome dysfunction, Blood, vol.115, pp.3196-205, 2010.

R. Gani, The nucleoli of cultured human lymphocytes. I. Nucleolar morphology in relation to transformation and the DNA cycle, Exp Cell Res, vol.97, pp.249-58, 1976.

M. Derenzini, T. , and D. , Importance of interphase nucleolar organizer regions in tumor pathology, Virchows Arch B Cell Pathol Incl Mol Pathol, vol.61, pp.1-8, 1991.

P. H. O'farrell and . Quiescence, Early evolutionary origins and universality do not imply uniformity, Philos Trans R Soc Lond B Biol Sci, vol.366, p.22084377, 2011.

L. Montanaro, D. M. Trer-e-d, R. Nucleolus, and . Cancer, Am J Pathol, vol.173, pp.301-311, 2008.

L. Montanaro, D. Trer-e, and M. Derenzini, The emerging role of RNA polymerase I transcription machinery in human malignancy: A clinical perspective, Onco Targets Ther, vol.6, p.23888116, 2013.

K. M. Hannan, E. Sanij, L. I. Rothblum, R. D. Hannan, and R. B. Pearson, Dysregulation of RNA polymerase I transcription during disease, Biochim Biophys Acta, p.23153826, 2013.

I. Orsolic, D. Jurada, N. Pullen, M. Oren, A. G. Eliopoulos et al., The relationship between the nucleolus and cancer: Current evidence and emerging paradigms, Semin Cancer Biol, 2016.

M. Derenzini, L. Montanaro, T. , and D. , Ribosome biogenesis and cancer, Acta Histochem, vol.119, p.28168996, 2017.

A. Arabi, S. Wu, K. Ridderstra-le, H. Bierhoff, C. Shiue et al., c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription, Nat Cell Biol, vol.7, pp.303-313, 2005.

C. Grandori, N. Gomez-roman, Z. A. Felton-edkins, C. Ngouenet, D. A. Galloway et al., c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I, Nat Cell Biol, vol.7, pp.311-319, 2005.

D. W. Kim, N. Wu, Y. C. Kim, P. F. Cheng, R. Basom et al., Genetic requirement for Mycl and efficacy of RNA pol I inhibition in mouse models of small cell lung cancer, Genes Dev, vol.30, p.27298335, 2016.

S. S. Grewal, L. Li, A. Orian, R. N. Eisenman, and B. A. Edgar, Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development, Nat Cell Biol, vol.7, pp.295-302, 2005.
DOI : 10.1038/ncb1223

K. Boon, H. N. Caron, R. Van-asperen, L. Valentijn, M. C. Hermus et al., N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis, EMBO J, vol.20, pp.1383-93, 2001.

Z. A. Felton-edkins, N. S. Kenneth, T. R. Brown, N. L. Daly, N. Gomezroman et al., Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc, Cell Cycle, vol.2, pp.181-185, 2003.

N. Gomez-roman, C. Grandori, R. N. Eisenman, and R. J. White, Direct activation of RNA polymerase III transcription by c-Myc, Nature, vol.421, pp.290-294, 2003.

D. D. Scott and M. Oeffinger, Nucleolin and nucleophosmin: Nucleolar proteins with multiple functions in DNA repair, Biochem Cell Biol, vol.94, p.27673355, 2016.

Z. Li, D. Boone, and S. R. Hann, Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation, Proc Natl Acad Sci, vol.105, pp.18794-18803, 2008.
DOI : 10.1073/pnas.0806879105

URL : http://www.pnas.org/content/105/48/18794.full.pdf

Z. Li and S. R. Hann, Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription, Oncogene, vol.32, 2013.
DOI : 10.1038/onc.2012.227

URL : https://www.nature.com/articles/onc2012227.pdf

O. Ayrault, L. Andrigue, C. J. Larsen, and P. Seite, Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes, Oncogene, vol.23, pp.8097-104, 2004.

O. Ayrault, L. Andrigue, C. Fauvin, B. Eymin, and S. Gazzeri, Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation, Oncogene, vol.25, pp.7577-86, 2006.
DOI : 10.1038/sj.onc.1209743

URL : https://hal.archives-ouvertes.fr/inserm-00175783

F. Lessard, F. Morin, S. Ivanchuk, F. Langlois, V. Stefanovsky et al., The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I

, Mol Cell, vol.38, p.20513429, 2010.

A. H. Cavanaugh, W. M. Hempel, L. J. Taylor, V. Rogalsky, G. Todorov et al., Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product, Nature, vol.374, pp.177-80, 1995.

K. M. Hannan, R. D. Hannan, S. D. Smith, L. S. Jefferson, M. Lun et al., Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1, Oncogene, vol.19, p.11042686, 2000.

S. Ciarmatori, P. H. Scott, J. E. Sutcliffe, A. Mclees, H. M. Alzuherri et al., Overlapping functions of the pRb family in the regulation of rRNA synthesis, Mol Cell Biol, vol.21, pp.5806-5820, 2001.

C. P. Rubbi and J. Milner, Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses, EMBO J, vol.22, pp.6068-77, 2003.

M. Sasaki, K. Kawahara, M. Nishio, K. Mimori, R. Kogo et al., Regulation of the MDM2-p53 pathway and tumor growth by PICT1 via nucleolar RPL11, Nat Med, vol.17, pp.944-51, 2011.

O. Karni-schmidt, A. Zupnick, M. Castillo, A. Ahmed, T. Matos et al., p53 is localized to a sub-nucleolar compartment after proteasomal inhibition in an energy-dependent manner, J Cell Sci, vol.121, pp.4098-105, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00378588

A. Budde and I. Grummt, p53 represses ribosomal gene transcription, Oncogene, vol.18, pp.1119-1143, 1999.

W. Zhai and L. Comai, Repression of RNA polymerase I transcription by the tumor suppressor p53, Mol Cell Biol, vol.20, p.10913176, 2000.

J. S. Ho, W. Ma, D. Y. Mao, and S. Benchimol, p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest, Mol Cell Biol, vol.25, p.16107691, 2005.

J. M. Liao, X. Zhou, A. Gatignol, and H. Lu, Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex, Oncogene, vol.33, p.24141778, 2014.

H. Chen, L. Han, H. Tsai, Z. Wang, Y. Wu et al., PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway, Oncotarget, vol.7, p.27829214, 2016.

H. Chen, Y. Duo, B. Hu, Z. Wang, F. Zhang et al., PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway, Oncotarget, vol.7, p.27729611, 2016.

C. Zhang, L. Comai, and D. L. Johnson, PTEN represses RNA polymerase I transcription by disrupting the SL1 complex, Mol Cell Biol, vol.25, pp.6899-911, 2005.

H. Liang, X. Chen, Q. Yin, D. Ruan, X. Zhao et al., PTENb is an alternatively translated isoform of PTEN that regulates rDNA transcription, Nat Commun, vol.8, p.14771, 2017.

R. Johnston, D. Costa, Z. Ray, S. Gorski, J. Harkin et al., The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription, Oncotarget, vol.7, p.27589844, 2016.

F. P. Fiorentino and A. Giordano, The tumor suppressor role of CTCF, J Cell Physiol, vol.227, pp.479-92, 2012.

S. Van-de-nobelen, M. Rosa-garrido, J. Leers, H. Heath, W. Soochit et al., CTCF regulates the local epigenetic state of ribosomal DNA repeats, Epigenetics Chromatin, vol.3, p.21059229, 2010.

K. Huang, J. Jia, C. Wu, M. Yao, M. Li et al., Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex, J Biol Chem, vol.288, p.23884423, 2013.

P. A. Guerrero and K. A. Maggert, The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability, PLoS One, vol.6, 2011.

D. Drygin, W. G. Rice, and I. Grummt, The RNA polymerase I transcription machinery: An emerging target for the treatment of cancer, Annu Rev Pharmacol Toxicol, vol.50, pp.131-56, 2010.

D. Drygin, A. Siddiqui-jain, O. 'brien, S. Schwaebe, M. Lin et al., Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis, Cancer Res, vol.69, pp.7653-61, 2009.

D. Drygin, A. Lin, J. Bliesath, C. B. Ho, S. E. O'brien et al., Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth, Cancer Res, vol.71, 2011.

V. Gonz-alez and L. H. Hurley, The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity, Biochemistry, vol.49, p.20932061, 2010.

T. A. Brooks and L. H. Hurley, Targeting MYC expression through G-quadruplexes, Genes Cancer, vol.1, pp.641-650, 2010.

H. C. Lee, H. Wang, V. Baladandayuthapani, H. Lin, J. He et al., RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma, Br J Haematol, vol.177, p.28369725, 2017.

D. W. Kim, N. Wu, Y. C. Kim, P. F. Cheng, R. Basom et al., Genetic requirement for Mycl and efficacy of RNA pol I inhibition in mouse models of small cell lung cancer, Genes Dev, vol.30, p.27298335, 2016.

H. Xu, D. Antonio, M. Mckinney, S. Mathew, V. Ho et al., CX-5461 is a DNA Gquadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours, Nat Commun, vol.8, p.14432, 2017.

K. Peltonen, L. Colis, H. Liu, S. Moore, H. M. Enb?-ack et al., Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents, PLoS One, vol.5, p.12996, 2010.

K. Peltonen, L. Colis, H. Liu, R. Trivedi, M. S. Moubarek et al., A targeting modality for destruction of RNA polymerase I that possesses anticancer activity, Cancer Cell, vol.25, p.24434211, 2014.

K. Peltonen, L. Colis, H. Liu, S. Zhang, Z. Af et al., Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress, Mol Cancer Ther, vol.13, pp.2537-2583, 2014.

K. M. Goudarzi, M. Nist-er, and L. Ms, mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels, Cancer Biol Ther, vol.15, p.25482947, 2014.

R. J. Rebello, E. Kusdani, D. P. Cameron, H. B. Pearson, A. Lesmana et al., The dual inhibition of RNA pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer, Clin Cancer Res, vol.22, p.27486174, 2016.

J. Quin, K. T. Chan, J. R. Devlin, D. P. Cameron, J. Diesch et al., Inhibition of RNA polymerase I transcription initiation by CX-5461 activates noncanonical ATM/ATR signaling, Oncotarget, vol.7, p.27391441, 2016.

S. E. Castel and R. A. Martienssen, RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond, Nat Rev Genet, vol.14, p.23329111, 2013.

M. Zaratiegui, S. E. Castel, D. V. Irvine, A. Kloc, J. Ren et al., RNAi promotes heterochromatic silencing through replication-coupled release of RNA pol II, Nature, vol.479, pp.135-143, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02013927

S. E. Castel, J. Ren, S. Bhattacharjee, A. Y. Chang, M. Valbuena et al., Dicer promotes transcription termination at sites of replication stress to maintain genome stability, Cell, vol.159, p.25417108, 2014.

F. E. Reyes-turcu, K. Zhang, M. Zofall, E. Chen, and S. I. Grewal, Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin, Nat Struct Mol Biol, vol.18, p.21892171, 2011.

L. Sinkkonen, T. Hugenschmidt, W. Filipowicz, and P. Svoboda, Dicer is associated with ribosomal DNA chromatin in mammalian cells, PLoS One, vol.5, p.20730047, 2010.

B. L. Atwood, J. L. Woolnough, G. M. Lefevre, M. Saint-just-ribeiro, G. Felsenfeld et al., Human Argonaute 2 is tethered to ribosomal RNA through microRNA interactions, J Biol Chem, vol.291, pp.17919-17947, 2016.

X. H. Liang and S. T. Crooke, Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing, Nucleid Acids Res, vol.39, p.21321021, 2011.

P. Y. Zhang, G. Li, Z. J. Deng, L. Y. Liu, L. Chen et al., Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents, Nucleic Acids Res, vol.44, pp.3629-3671, 2016.

Y. C. Tsai, T. M. Greco, A. Boonmee, Y. Miteva, and I. M. Cristea, Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription, Mol Cell Proteomics, vol.11, p.22586326, 2012.

J. C. Peng and G. H. Karpen, H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability, Nat Cell Biol, vol.9, p.17159999, 2007.

C. F. Li, O. Pontes, M. El-shami, I. R. Henderson, Y. V. Bernatavichute et al., An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana, Cell, vol.126, pp.93-106, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164266

O. Pontes, C. F. Li, C. Nunes, P. Haag, J. Ream et al., The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center, Cell, vol.126, pp.79-92, 2006.

D. A. Bernstein, V. K. Vyas, D. E. Weinberg, I. A. Drinnenberg, D. P. Bartel et al., Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation, Proc Natl Acad Sci, vol.109, p.22173636, 2012.

J. Kufel, B. Dichtl, and D. Tollervey, Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3 0 ETS but not the 5 0 ETS, RNA, vol.5, pp.909-926, 1999.

S. Cai, W. Zhao, X. Nie, A. Abbas, L. Fu et al., Multimorbidity and genetic characteristics of DICER1 syndrome based on systematic review, J Pediatr Hematol Oncol, vol.39, p.27906793, 2017.

L. Fern-andez-martinez, J. A. Villegas, I. Santamar-ia, A. S. Pitiot, M. G. Alvarado et al., Identification of somatic and germ-line DICER1 mutations in pleuropulmonary blastoma, cystic nephroma and rhabdomyosarcoma tumors within a DICER1 syndrome pedigree, BMC Cancer, vol.17, p.28222777, 2017.

M. Rossing, A. M. Gerdes, A. Juul, C. Rechnitzer, M. Rudnicki et al., A novel DICER1 mutation identified in a female with ovarian Sertoli-Leydig cell tumor and multinodular goiter: A case report, J Med Case Rep, vol.8, p.24708902, 2014.

E. Durieux, F. Descotes, A. M. Nguyen, and J. D. Grange, Devouassoux-Shisheboran M. Somatic DICER1 gene mutation in sporadic intraocular medulloepithelioma without pleuropulmonary blastoma syndrome, Hum Pathol, vol.46, p.25791583, 2015.

E. Durieux, F. Descotes, C. Mauduit, M. Decaussin, S. Guyetant et al., The co-occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome, Virchows Arch, vol.468, pp.631-637, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01792605

M. M. Rutter, P. Jha, K. A. Schultz, A. Sheil, A. K. Harris et al., DICER1 mutations and differentiated thyroid carcinoma: Evidence of a direct association, J Clin Endocrinol Metab, vol.101, pp.1-5, 2016.

J. Fremerey, S. Balzer, T. Brozou, J. Schaper, A. Borkhardt et al., Embryonal rhabdomyosarcoma in a patient with a heterozygous frameshift variant in the DICER1 gene and additional manifestations of the DICER1 syndrome, Fam Cancer, vol.16, p.27896549, 2017.

N. Conlon, A. M. Schultheis, S. Piscuoglio, A. Silva, E. Guerra et al., A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors, Mod Pathol, vol.28, p.26428316, 2015.

A. Heravi-moussavi, M. S. Anglesio, S. W. Cheng, J. Senz, Y. W. Prentice et al., Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers, N Engl J Med, vol.366, pp.234-276, 2012.

A. Bahubeshi, N. Bal, R. Frio, T. Hamel, N. Pouchet et al., Germline DICER1 mutations and familial cystic nephroma, J Med Genet, vol.47, p.21036787, 2010.

T. B. Palculict, E. C. Ruteshouser, Y. Fan, W. Wang, L. Strong et al., Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour, J Med Genet, vol.53, pp.385-393, 2016.

D. A. Hill, J. Ivanovich, J. R. Priest, C. A. Gurnett, L. P. Dehner et al., DICER1 mutations in familial pleuropulmonary blastoma, Science, vol.325, p.965, 2009.

L. A. Doros, C. T. Rossi, J. Yang, A. Field, G. M. Williams et al., DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma, Mod Pathol, vol.27, p.24481001, 2014.

W. D. Foulkes, A. Bahubeshi, N. Hamel, B. Pasini, S. Asioli et al., Extending the phenotypes associated with DICER1 mutations, Hum Mutat, vol.32, p.21882293, 2011.

N. E. Khan, A. J. Bauer, K. Schultz, L. Doros, R. M. Decastro et al., Quantification of thyroid cancer and multinodular goiter risk in the DICER1 syndrome: A family-based cohort study, J Clin Endocrinol Metab, vol.102, pp.1614-1636, 2017.

R. Frio, T. Bahubeshi, A. Kanellopoulou, C. Hamel, N. Niedziela et al., DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors, JAMA, vol.305, p.21205968, 2011.

L. De-kock, N. Sabbaghian, H. Druker, E. Weber, N. Hamel et al., Germ-line and somatic DICER1 mutations in pineoblastoma, Acta Neuropathol, vol.128, p.25022261, 2014.

F. Sahm, F. A. Jakobiec, J. Meyer, D. Schrimpf, C. G. Eberhart et al., Somatic mutations of DICER1 and KMT2D are frequent in intraocular medulloepitheliomas, Genes Chromosomes Cancer, vol.55, pp.418-445, 2016.

M. K. Wu, N. Sabbaghian, B. Xu, S. Addidou-kalucki, C. Bernard et al., Biallelic DICER1 mutations occur in Wilms tumours, J Pathol, vol.230, pp.154-64, 2013.

M. Seki, K. Yoshida, Y. Shiraishi, T. Shimamura, Y. Sato et al., Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma, Cancer Res, vol.74, p.24675358, 2014.

Y. Wang, J. Chen, W. Yang, F. Mo, J. Senz et al., The oncogenic roles of DICER1

, RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors, Neoplasia, vol.17, pp.650-60, 2015.

M. Brenneman, A. Field, J. Yang, G. Williams, L. Doros et al., Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in DICER1 syndrome: A unique variant of the two-hit tumor suppression model, F1000Res, vol.4, p.214, 2015.

L. Witkowski, J. Mattina, S. Sch?-onberger, M. J. Murray, C. S. Choong et al., DICER1 hotspot mutations in non-epithelial gonadal tumours, Br J Cancer, vol.109, pp.2744-50, 2013.

Y. H. Messinger, D. R. Stewart, J. R. Priest, G. M. Williams, A. K. Harris et al., Pleuropulmonary blastoma: A report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry, Cancer, vol.121, pp.276-85, 2015.

T. J. Pugh, W. Yu, J. Yang, A. L. Field, L. Ambrogio et al., Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences, Oncogene, vol.33, p.24909177, 2014.

D. Rakheja, K. S. Chen, Y. Liu, A. A. Shukla, V. Schmid et al., Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours, Nat Commun, vol.2, p.25190313, 2014.

R. Mudhasani, Z. Zhu, G. Hutvagner, C. M. Eischen, S. Lyle et al., Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells, J Cell Biol, vol.181, pp.1055-63, 2008.

S. Lyle, K. Hoover, C. Colpan, Z. Zhu, Z. Matijasevic et al., Dicer cooperates with p53 to suppress DNA damage and skin carcinogenesis in mice, PLoS One, vol.9, p.24979267, 2014.

X. Su, D. Chakravarti, M. S. Cho, L. Liu, Y. J. Gi et al., TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs, Nature, vol.467, pp.986-90, 2010.

L. M. Pastorelli, S. Wells, M. Fray, A. Smith, T. Hough et al., Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract, Mamm Genome, vol.20, pp.140-51, 2009.

P. K. Wagh, M. A. Gardner, X. Ma, M. Callahan, J. M. Shannon et al., Cell-and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma, J Pathol, vol.236, p.25500911, 2015.

I. Lambertz, D. Nittner, P. Mestdagh, G. Denecker, J. Vandesompele et al., Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo, Cell Death Differ, vol.17, pp.633-674, 2010.

M. S. Kumar, R. E. Pester, C. Y. Chen, K. Lane, C. Chin et al., Dicer1 functions as a haploinsufficient tumor suppressor, Genes Dev, vol.23, pp.2700-2704, 2009.

M. P. Arrate, T. Vincent, J. Odvody, R. Kar, S. N. Jones et al., MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival, Cancer Res, vol.70, pp.6083-92, 2010.

T. Yoshikawa, M. Otsuka, T. Kishikawa, A. Takata, M. Ohno et al., Unique haploinsufficient role of the microRNA-processing molecule Dicer1 in a murine colitis-associated tumorigenesis model, PLoS One, vol.8, p.24023722, 2013.

S. Morita, A. Hara, I. Kojima, T. Horii, M. Kimura et al., Dicer is required for maintaining adult pancreas, PLoS One, vol.4, p.4212, 2009.

K. S. Harris, Z. Zhang, M. T. Mcmanus, B. D. Harfe, and X. Sun, Dicer function is essential for lung epithelium morphogenesis, Proc Natl Acad Sci, vol.103, pp.2208-2221, 2006.

G. J. Kim, G. I. Scherthan, H. Merkenschlager, M. Guillou, F. Scherer et al., Dicer is required for Sertoli cell function and survival, Int J Dev Biol, vol.54, pp.867-75, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01129457

H. M. Korhonen, O. Meikar, R. P. Yadav, M. D. Papaioannou, Y. Romero et al., Dicer is required for haploid male germ cell differentiation in mice, PLoS One, vol.6, p.21949761, 2011.

N. Buza-vidas, V. B. Cismasiu, S. Moore, A. J. Mead, P. S. Woll et al., Dicer is selectively important for the earliest stages of erythroid development, Blood, vol.120, pp.2412-2418, 2012.

Z. Li, X. He, and J. Feng, Dicer is essential for neuronal polarity, Int J Dev Neurosci, vol.30, pp.607-618, 2012.

V. Swahari, A. Nakamura, J. Baran-gale, I. Garcia, A. J. Crowther et al., Essential function of Dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant cerebellum, Cell Rep, vol.14, pp.216-240, 2016.

S. Xu, K. Guo, Q. Zeng, J. Huo, and K. P. Lam, The RNase III enzyme Dicer is essential for germinal center B-cell formation, Blood, vol.119, p.22117047, 2012.

H. C. Liu, Y. Tang, Z. He, and Z. Rosenwaks, Dicer is a key player in oocyte maturation, J Assist Reprod Genet, vol.27, p.20827505, 2010.

A. M. Gurtan, V. Lu, A. Bhutkar, and P. A. Sharp, In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs, RNA, vol.18, p.22546613, 2012.

M. S. Anglesio, Y. Wang, W. Yang, J. Senz, A. Wan et al., Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage, J Pathol, vol.229, p.23132766, 2013.

K. Ohishi and T. Nakano, A forward genetic screen to study mammalian RNA interference: Essential role of RNase IIIa domain of Dicer1 in 3 0 strand cleavage of dsRNA in vivo, FEBS J, vol.279, pp.832-875, 2012.

J. Balzeau, M. R. Menezes, S. Cao, and J. P. Hagan, The LIN28/let-7 pathway in cancer, Front Genet, vol.8, p.31, 2017.

X. J. Wang, F. Z. Jiang, H. Tong, J. Q. Ke, Y. R. Li et al., Dicer1 dysfunction promotes stemness and agression in endometrial carcinoma, Tumour Biol, vol.39, p.28381177, 2017.

Y. H. Yi, T. H. Ma, L. W. Lee, P. T. Chiou, P. H. Chen et al., A genetic cascade of let-7-ncl-1-fib-1 modulates nucleolar size and rRNA pool in Caenorhabditis elegans, PLoS Genet, vol.11, p.26492166, 2015.

J. E. Babiarz, J. G. Ruby, Y. Wang, D. P. Bartel, and R. Blelloch, Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessorindependent, Dicer-dependent small RNAs, Genes Dev, vol.22, p.18923076, 2008.

T. M. Johanson, A. M. Lew, and M. M. Chong, MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer, Open Biol, vol.3, p.24153005, 2013.

C. Cole, A. Sobala, C. Lu, S. R. Thatcher, A. Bowman et al., Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs, RNA, vol.15, pp.2147-60, 2009.

C. Ender, A. Krek, M. R. Friedl?-ander, M. Beitzinger, L. Weinmann et al., A human snoRNA with miRNA-like functions, Mol Cell, vol.32, pp.519-547, 2008.

R. J. Taft, E. A. Glazov, T. Lassmann, Y. Hayashizaki, and P. Carninci, Mattick JS. Small RNAs derived from snoRNAs, RNA, vol.15, p.19474147, 2009.

Y. F. Ren, G. Li, J. Wu, Y. F. Xue, Y. J. Song et al., Dicer-dependent biogenesis of small RNAs derived from 7SL RNA, PLoS One, vol.7, p.22808238, 2012.

Y. F. Ren, G. Li, Y. F. Xue, X. J. Zhang, Y. J. Song et al., Decreased dicer expression enhances SRPmediated protein targeting, PLoS One, vol.8, p.23468895, 2013.

S. Francia, F. Michelini, A. Saxena, D. Tang, M. De-hoon et al., Site-specific DICER and DROSHA RNA products control the DNA-damage response, Nature, vol.488, pp.231-236, 2012.

S. Francia, M. Cabrini, V. Matti, A. Oldani, F. Di-fagagna et al., DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors, J Cell Sci, vol.129, pp.1468-76, 2016.

S. Yuan, N. Ortogero, Q. Wu, H. Zheng, and W. Yan, Murine follicular development requires oocyte DICER, but not DROSHA, Biol Reprod, vol.91, p.24990804, 2014.

Y. K. Kim, B. Kim, and V. N. Kim, Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis, Proc Natl Acad Sci, vol.113, p.26976605, 2016.

M. Yoshikawa and Y. R. Fujii, Human ribosomal RNA-derived resident microRNAs as the transmitter of information upon the cytoplasmic cancer stress, Biomed Res Int, p.27517048, 2016.

B. Bai, H. Liu, and M. Laiho, Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs, FEBS Open Biol, vol.4, p.24918059, 2014.

M. Ono, M. S. Scott, K. Yamada, F. Avolio, G. J. Barton et al., Identification of human miRNA precursors that resemble box C/D snoRNAs, Nucleid Acids Res, vol.39, pp.3879-91, 2011.

R. Srivas, J. P. Shen, C. C. Yang, S. M. Sun, J. Li et al., A network of conserved synthetic lethal interactions for exploration of precision cancer therapy, Mol Cell, vol.63, p.27453043, 2016.

G. Kim, G. Ison, A. E. Mckee, H. Zhang, S. Tang et al., FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy, Clin Cancer Res, vol.21, pp.4257-61, 2015.

A. Roguev, S. Bandyopadhyay, M. Zofall, K. Zhang, T. Fischer et al., Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast, Science, vol.322, pp.405-415, 2008.

L. M. Pouliot, D. W. Shen, T. Suzuki, M. D. Hall, and M. M. Gottesman, Contributions of microRNA dysregulation to cisplatin resistance in adenocarcinoma cells, Exp Cell Res, vol.319, pp.566-74, 2013.

W. J. Andrews, T. Panova, C. Normand, O. Gadal, I. G. Tikhonova et al., Old drug, new target: Ellipticines selectively inhibit RNA polymerase I transcription, J Biol Chem, vol.288, p.23293027, 2013.

J. K. Gerber, E. Berger, C. Wallisch, M. M?-uller, F. Grummt et al., Termination of mammalian rDNA replication: Polar arrest of replication fork movement by transcription termination factor TTF-I, Cell, vol.90, p.9267035, 1997.

A. Gorostiaga, C. Opez-estra~-no, D. B. Krimer, and J. B. Schvartzman, Hern andez P. Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo, Mol Cell Biol, vol.24, pp.398-406, 2004.

J. A. Aguirre-ghiso, Models, mechanisms and clinical evidence for cancer dormancy, Nat Rev Cancer, vol.7, p.17957189, 2007.