D. Branzei and M. Foiani, Interplay of replication checkpoints and repair proteins at stalled replication forks, DNA Repair (Amst), vol.6, pp.994-1003, 2007.

R. C. Heller and K. J. Marians, Replisome assembly and the direct restart of stalled replication forks, Nat Rev Mol Cell Biol, vol.7, pp.932-943, 2006.

S. Lambert, B. Froget, and A. M. Carr, Arrested replication fork processing: interplay between checkpoints and recombination, DNA Repair (Amst), vol.6, pp.1042-1061, 2007.

D. Branzei and M. Foiani, Regulation of DNA repair throughout the cell cycle, Nat Rev Mol Cell Biol, vol.9, pp.297-308, 2008.

R. D. Paulsen and K. A. Cimprich, The ATR pathway: fine-tuning the fork, DNA Repair (Amst), vol.6, pp.953-966, 2007.

A. Aguilera and B. Gomez-gonzalez, Genome instability: a mechanistic view of its causes and consequences, Nat Rev Genet, vol.9, pp.204-217, 2008.

A. M. Carr, DNA structure dependent checkpoints as regulators of DNA repair, DNA Repair (Amst), vol.1, pp.983-994, 2002.

K. A. Nyberg, R. J. Michelson, C. W. Putnam, and T. A. Weinert, TOWARD MAINTAINING THE GENOME: DNA Damage and Replication Checkpoints, Annu Rev Genet, vol.36, pp.617-656, 2002.

M. N. Boddy and P. Russell, DNA replication checkpoint, Curr Biol, vol.11, pp.953-956, 2001.

N. C. Walworth and R. Bernards, rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint, Science, vol.271, pp.353-356, 1996.

Y. Zeng, K. C. Forbes, Z. Wu, S. Moreno, and H. Piwnica-worms, Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1, Nature, vol.395, pp.507-510, 1998.

M. N. Boddy, B. Furnari, O. Mondesert, and P. Russell, Replication checkpoint enforced by kinases Cds1 and Chk1, Science, vol.280, pp.909-912, 1998.

H. D. Lindsay, D. J. Griffiths, R. J. Edwards, P. U. Christensen, and J. M. Murray, S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe, Genes Dev, vol.12, pp.382-395, 1998.

M. Lopes, C. Cotta-ramusino, A. Pellicioli, G. Liberi, and P. Plevani, The DNA replication checkpoint response stabilizes stalled replication forks, Nature, vol.412, pp.557-561, 2001.

V. Paciotti, M. Clerici, M. Scotti, G. Lucchini, and M. P. Longhese, Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway, Mol Cell Biol, vol.21, pp.3913-3925, 2001.

J. M. Sogo, M. Lopes, and M. Foiani, Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects, Science, vol.297, pp.599-602, 2002.

J. A. Tercero and J. F. Diffley, Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint, Nature, vol.412, pp.553-557, 2001.

J. A. Tercero, M. P. Longhese, and J. F. Diffley, A central role for DNA replication forks in checkpoint activation and response, Mol Cell, vol.11, pp.1323-1336, 2003.

E. Noguchi, C. Noguchi, L. L. Du, and P. Russell, Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1, Mol Cell Biol, vol.23, pp.7861-7874, 2003.

E. Noguchi, C. Noguchi, W. H. Mcdonald, J. R. Yates, and P. Russell, Swi1 and Swi3 are components of a replication fork protection complex in fission yeast, Mol Cell Biol, vol.24, pp.8342-8355, 2004.

M. Lisby, U. H. Mortensen, and R. Rothstein, Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre, Nat Cell Biol, vol.5, pp.572-577, 2003.

M. Lisby, R. Rothstein, and U. H. Mortensen, Rad52 forms DNA repair and recombination centers during S phase, Proc Natl Acad Sci U S A, vol.98, pp.8276-8282, 2001.

E. Sommariva, T. K. Pellny, N. Karahan, S. Kumar, and J. A. Huberman, Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel Sphase response pathway to alkylation damage, Mol Cell Biol, vol.25, pp.2770-2784, 2005.

B. S. Lee, S. I. Grewal, and A. J. Klar, Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast, Mol Cell Biol, vol.24, pp.9813-9822, 2004.

A. L. Gotter, Tipin, a novel timeless-interacting protein, is developmentally coexpressed with timeless and disrupts its self-association, J Mol Biol, vol.331, pp.167-176, 2003.

M. L. Mayer, I. Pot, M. Chang, H. Xu, and V. Aneliunas, Identification of protein complexes required for efficient sister chromatid cohesion, Mol Biol Cell, vol.15, pp.1736-1745, 2004.

A. Calzada, B. Hodgson, M. Kanemaki, A. Bueno, and K. Labib, Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork, Genes Dev, vol.19, pp.1905-1919, 2005.

Y. Katou, Y. Kanoh, M. Bando, H. Noguchi, and H. Tanaka, S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex, Nature, vol.424, pp.1078-1083, 2003.

M. N. Nedelcheva, A. Roguev, L. B. Dolapchiev, A. Shevchenko, and H. B. Taskov, Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex, J Mol Biol, vol.347, pp.509-521, 2005.

A. Gambus, R. C. Jones, A. Sanchez-diaz, M. Kanemaki, and F. Van-deursen, GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks, Nat Cell Biol, vol.8, pp.358-366, 2006.

D. M. Chou and S. J. Elledge, Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function, Proc Natl Acad Sci U S A, vol.103, pp.18143-18147, 2006.

A. L. Gotter, C. Suppa, and B. S. Emanuel, Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors, J Mol Biol, vol.366, pp.36-52, 2007.

K. Unsal-kacmaz, P. D. Chastain, P. P. Qu, P. Minoo, and M. Cordeiro-stone, The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement, Mol Cell Biol, 2007.

N. Yoshizawa-sugata and H. Masai, Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint, J Biol Chem, vol.282, pp.2729-2740, 2007.

A. R. Leman, C. Noguchi, C. Y. Lee, and E. Noguchi, Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion, J Cell Sci, vol.123, pp.660-670, 2010.

S. Wan, H. Capasso, and N. C. Walworth, The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast, Yeast, vol.15, pp.821-828, 1999.

A. B. Ansbach, C. Noguchi, I. W. Klansek, M. Heidlebaugh, and T. M. Nakamura, RFC Ctf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe, Mol Biol Cell, vol.19, pp.595-607, 2008.

R. J. Edwards, N. J. Bentley, and A. M. Carr, A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins, Nat Cell Biol, vol.1, pp.393-398, 1999.

T. D. Wolkow and T. Enoch, Fission yeast Rad26 is a regulatory subunit of the Rad3 checkpoint kinase, Mol Biol Cell, vol.13, pp.480-492, 2002.

D. Q. Ding, A. Yamamoto, T. Haraguchi, and Y. Hiraoka, Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast, Dev Cell, vol.6, pp.329-341, 2004.

Y. Hiraoka, T. Toda, and M. Yanagida, The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis, Cell, vol.39, pp.349-358, 1984.

J. S. Hanna, E. S. Kroll, V. Lundblad, and F. A. Spencer, Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion, Mol Cell Biol, vol.21, pp.3144-3158, 2001.

M. L. Mayer, S. P. Gygi, R. Aebersold, and P. Hieter, Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae, Mol Cell, vol.7, pp.959-970, 2001.

R. A. Silverstein, W. Richardson, H. Levin, R. Allshire, and K. Ekwall, A new role for the transcriptional corepressor SIN3; regulation of centromeres, Curr Biol, vol.13, pp.68-72, 2003.

K. Tatebayashi, J. Kato, and H. Ikeda, Isolation of a Schizosaccharomyces pombe rad21 ts mutant that is aberrant in chromosome segregation, microtubule function, DNA repair and sensitive to hydroxyurea: possible involvement of Rad21 in ubiquitin-mediated proteolysis, Genetics, vol.148, pp.49-57, 1998.

S. W. Wang, R. L. Read, and C. J. Norbury, Fission yeast Pds5 is required for accurate chromosome segregation and for survival after DNA damage or metaphase arrest, J Cell Sci, vol.115, pp.587-598, 2002.

D. R. Williams and J. R. Mcintosh, 2002) mcl1 + , the Schizosaccharomyces pombe homologue of CTF4, is important for chromosome replication, cohesion, and segregation, Eukaryot Cell, vol.1, pp.758-773

J. Z. Dalgaard and A. J. Klar, ) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe, Cell, vol.102, pp.745-751, 2000.

A. Kaykov, A. M. Holmes, and B. Arcangioli, Formation, maintenance and consequences of the imprint at the mating-type locus in fission yeast, Embo J, vol.23, pp.930-938, 2004.

G. Krings and D. Bastia, swi1-and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe, Proc Natl Acad Sci U S A, vol.101, pp.14085-14090, 2004.

D. W. Pryce, S. Ramayah, A. Jaendling, and R. J. Mcfarlane, Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1, Proc Natl Acad Sci U S A, vol.106, pp.4770-4775, 2009.

M. Shimmoto, S. Matsumoto, Y. Odagiri, E. Noguchi, and P. Russell, Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast, Genes Cells, vol.14, pp.669-682, 2009.

C. D. Warren, D. M. Eckley, M. S. Lee, J. S. Hanna, and A. Hughes, S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion, Mol Biol Cell, vol.15, pp.1724-1735, 2004.

L. Strom, C. Karlsson, H. B. Lindroos, S. Wedahl, and Y. Katou, Postreplicative formation of cohesion is required for repair and induced by a single DNA break, Science, vol.317, pp.242-245, 2007.

E. Unal, J. M. Heidinger-pauli, and D. Koshland, DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7), Science, vol.317, pp.245-248, 2007.

C. Alfa, P. Fantes, J. Hyams, M. Mcleod, and E. Warbrick, Experiments with Fission Yeast, 1993.

S. Moreno, A. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Methods Enzymol, vol.194, pp.795-823, 1991.

E. Noguchi, A. B. Ansbach, C. Noguchi, and P. Russell, Assays used to study the DNA replication checkpoint in fission yeast, Methods Mol Biol, vol.521, pp.493-507, 2009.

A. Woods, T. Sherwin, R. Sasse, T. H. Macrae, and A. J. Baines, Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies, J Cell Sci, vol.93, pp.491-500, 1989.

J. B. Keeney and J. D. Boeke, Efficient targeted integration at leu1-32 and ura4294 in Schizosaccharomyces pombe, Genetics, vol.136, pp.849-856, 1994.

L. Du, T. Nakamura, B. A. Moser, and P. Russell, Retention but not recruitment of Crb2 at double-strand breaks requires Rad1 and Rad3 complexes, Mol Cell Biol, vol.23, pp.6150-6158, 2003.

M. Sato, S. Dhut, and T. Toda, New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe, Yeast, vol.22, pp.583-591, 2005.

T. A. Kunkel, Rapid and efficient site-specific mutagenesis without phenotypic selection, Proc Natl Acad Sci U S A, vol.82, pp.488-492, 1985.

F. Al-khodairy, E. Fotou, K. S. Sheldrick, D. J. Griffiths, and A. R. Lehmann, Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast, Mol Biol Cell, vol.5, pp.147-160, 1994.

Y. Ichihara and Y. Kurosawa, Construction of new T vectors for direct cloning of PCR products, Gene, vol.130, pp.153-154, 1993.

C. Noguchi and E. Noguchi, Sap1 promotes the association of the replication fork protection complex with chromatin and is involved in the replication checkpoint in Schizosaccharomyces pombe, Genetics, vol.175, pp.553-566, 2007.