J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol, vol.13, pp.42-51, 2015.

R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect. Medicin. Chem, vol.6, pp.25-64, 2014.

H. Cho, T. Uehara, and T. G. Bernhardt, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery, Cell, vol.159, pp.1300-1311, 2014.

C. Artola-recolons, C. Carrasco-lópez, L. I. Llarrull, M. Kumarasiri, E. Lastochkin et al., High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, Biochemistry, vol.50, pp.2384-2386, 2011.

A. Bateman and M. Bycroft, The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD), J. Mol. Biol, vol.299, pp.1113-1119, 2000.

P. K. Madoori and A. M. Thunnissen, Purification, crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltF from Escherichia coli, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.66, pp.534-538, 2010.

J. Lommatzsch, M. F. Templin, A. R. Kraft, W. Vollmer, and J. V. Höltje, Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli, J. Bacteriol, vol.179, pp.5465-5470, 1997.

C. Artola-recolons, M. Lee, N. Bernardo-garcía, B. Blázquez, D. Hesek et al., Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli, ACS Chem. Biol, vol.9, pp.2058-2066, 2014.

A. M. Thunnissen, A. J. Dijkstra, K. H. Kalk, H. J. Rozeboom, H. Engel et al., Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography, Nature, vol.367, pp.750-753, 1994.

A. M. Thunnissen, N. W. Isaacs, and B. W. Dijkstra, The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes, Proteins, vol.22, pp.245-258, 1995.

K. A. Cloud and J. P. Dillard, A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production, Infect. Immun, vol.70, pp.2752-2757, 2002.

K. A. Cloud and J. P. Dillard, Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae, J. Bacteriol, vol.186, pp.7811-7814, 2004.

K. L. Woodhams, J. M. Chan, J. D. Lenz, K. T. Hackett, and J. P. Dillard, Peptidoglycan fragment release from Neisseria meningitidis, Infect. Immun, vol.81, pp.3490-3498, 2013.

S. E. Girardin, L. H. Travassos, M. Hervé, D. Blanot, I. G. Boneca et al., Mengin-Lecreulx, D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2, J. Biol. Chem, vol.278, pp.41702-41708, 2003.

S. E. Girardin, I. G. Boneca, L. A. Carneiro, A. Antignac, M. Jéhanno et al., Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan, Science, vol.300, pp.1584-1587, 2003.

S. E. Girardin, I. G. Boneca, M. Chamaillard, A. Labigne, G. Thomas et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection, J. Biol. Chem, vol.278, pp.8869-8872, 2003.

J. Viala, C. Chaput, I. G. Boneca, A. Cardona, S. E. Girardin et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nat. Immunol, vol.5, pp.1166-1174, 2004.

J. Van-heijenoort, Peptidoglycan hydrolases of Escherichia coli. Microbiol, Mol. Biol. Rev, vol.75, pp.636-663, 2011.

P. L. Kohler, H. L. Hamilton, K. Cloud-hansen, and J. P. Dillard, AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system, J. Bacteriol, vol.189, pp.5421-5428, 2007.

K. A. Cloud-hansen, K. T. Hackett, D. L. Garcia, and J. P. Dillard, Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers, J. Bacteriol, vol.190, pp.5989-5994, 2008.

Y. A. Chan, K. T. Hackett, and J. P. Dillard, The lytic transglycosylases of Neisseria gonorrhoeae, Microb. Drug. Resist, vol.18, pp.271-279, 2012.

R. E. Schaub, Y. A. Chan, M. Lee, D. Hesek, S. Mobashery et al., Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae, Mol. Microbiol, vol.102, pp.865-881, 2016.

Y. G. Santin and E. Cascales, Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system, EMBO Rep, vol.18, pp.138-149, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780697

W. Vollmer and J. V. Holtje, The architecture of the murein (peptidoglycan) in gram-negative bacteria: Vertical scaffold or horizontal layer(s)?, J. Bacteriol, vol.186, pp.5978-5987, 2004.

W. Vollmer, B. Joris, P. Charlier, and S. Foster, Bacterial peptidoglycan (murein) hydrolases, FEMS Microbiol. Rev, vol.32, pp.259-286, 2008.

W. Vollmer, D. Blanot, and M. A. De-pedro, Peptidoglycan structure and architecture, FEMS Microbiol. Rev, vol.32, pp.149-167, 2008.

W. Vollmer, Structural variation in the glycan strands of bacterial peptidoglycan, FEMS Microbiol. Rev, vol.32, pp.287-306, 2008.

W. Vollmer and U. Bertsche, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli, Biochim. Biophys. Acta, vol.1778, pp.1714-1734, 2008.

E. Scheurwater, C. W. Reid, and A. J. Clarke, Lytic transglycosylases: Bacterial space-making autolysins, Int. J. Biochem. Cell Biol, vol.40, pp.586-591, 2008.

E. J. Van-asselt, A. M. Thunnissen, and B. W. Dijkstra, High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment, J. Mol. Biol, vol.291, pp.877-898, 1999.

C. W. Reid, N. T. Blackburn, B. A. Legaree, F. I. Auzanneau, and A. J. Clarke, Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline, FEBS Lett, vol.574, pp.73-79, 2004.

E. J. Van-asselt and B. W. Dijkstra, Binding of calcium in the EF-hand of Escherichia coli lytic transglycosylase Slt35 is important for stability, FEBS Lett, vol.458, pp.429-435, 1999.

M. F. Templin, D. H. Edwards, and J. V. Holtje, A murein hydrolase is the specific target of bulgecin in Escherichia coli, J. Biol. Chem, vol.267, 1992.

M. Bonis, A. H. Williams, S. Guadagnini, C. Werts, and I. G. Boneca, The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori, Microb. Drug. Resist, vol.18, pp.230-239, 2012.

A. M. Thunnissen, H. J. Rozeboom, K. H. Kalk, and B. W. Dijkstra, Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism, Biochemistry, vol.34, pp.12729-12737, 1995.

M. J. Skalweit and M. Li, Bulgecin A as a beta-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms, Drug. Des. Devel. Ther, vol.10, pp.3013-3020, 2016.

A. Antignac, P. Kriz, G. Tzanakaki, J. M. Alonso, and M. K. Taha, Polymorphism of Neisseria meningitidis penA gene associated with reduced susceptibility to penicillin, J. Antimicrob. Chemother, vol.47, pp.285-296, 2001.

A. Antignac, I. G. Boneca, J. C. Rousselle, A. Namane, J. P. Carlier et al., Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G, J. Biol. Chem, vol.278, pp.31529-31535, 2003.

N. Belkacem, E. Hong, A. Antunes, A. Terrade, A. E. Deghmane et al., Use of Animal models to support revising meningococcal breakpoints of beta-lactams, Antimicrob. Agents Chemother, vol.60, pp.4023-4027, 2016.

B. W. Dijkstra and A. Thunnissen, Holy" proteins. II: The soluble lytic transglycosylase, Curr. Opin. Struct. Biol, vol.4, pp.810-813, 1994.

, Antibiotics, vol.6, pp.14-14, 2017.

T. Romeis and J. V. Holtje, Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli, J. Biol. Chem, vol.269, pp.21603-21607, 1994.

B. A. Legaree and A. J. Clarke, Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa, J. Bacteriol, vol.190, pp.6922-6926, 2008.

M. Von-rechenberg, A. Ursinus, and J. V. Holtje, Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis, Microb. Drug. Resist, vol.2, pp.155-157, 1996.

R. Wheeler, F. Veyrier, C. Werts, and I. G. Boneca, Peptidoglycan and nod receptor, In Glycoscience: Biology and Medicine
URL : https://hal.archives-ouvertes.fr/pasteur-02337884

N. Taniguchi, T. Endo, G. W. Hart, P. H. Seeberger, and C. Wong, , pp.737-747, 2014.

D. S. Kellogg, . Jr, W. L. Peacock, W. E. Jr;-deacon, L. Brown et al., Neisseria Gonorrhoeae. I. Virulence genetically linked to clonal variation, J. Bacteriol, vol.85, pp.1274-1279, 1963.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: A comprehensive python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. Emsley and K. Cowtan, Coot: Model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

C. P. Collaborative, The CCP4 suite: Programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.50, pp.760-763, 1994.

I. W. Davis, L. W. Murray, J. S. Richardson, D. C. Richardson, and . Molprobity, Structure validation and all-atom contact analysis for nucleic acids and their complexes, Nucleic. Acids Res, vol.32, pp.615-619, 2004.