, World Health Organization. Global tuberculosis report, 2017.

, Antibiotic resistance threats in the United States, 2013.

, European Centre for Disease Prevention and Control and European Medicines Agency: ECDC/EMEA joint technical report the bacterial challenge: Time to react, 2009.

W. Gao, S. Thamphiwatana, P. Angsantikul, and L. Zhang, Nanoparticle approaches against bacterial infections, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.6, pp.532-579, 2014.
DOI : 10.1002/wnan.1282

URL : http://europepmc.org/articles/pmc4197093?pdf=render

J. Costa-gouveia, J. A. Ainsa, P. Brodin, and A. Lucia, How can nanoparticles contribute to antituberculosis therapy?, Drug Discov Today, vol.22, pp.600-607, 2017.
DOI : 10.1016/j.drudis.2017.01.011

L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer et al., Nanoparticles in medicine: therapeutic applications and developments, Clin Pharmacol Ther, vol.83, pp.761-770, 2008.

F. Fenaroli, D. Westmoreland, J. Benjaminsen, T. Kolstad, F. M. Skjeldait et al., Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment, ACS Nano, vol.8, pp.7014-7040, 2014.

J. T. Wilson, S. Keller, M. J. Manganiello, C. Cheng, C. C. Lee et al., pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides, ACS Nano, vol.7, pp.3912-3937, 2013.

J. Han, J. Zhang, M. Yang, D. Cui, and J. M. De-la-fuente, Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy, Nanoscale, vol.8, pp.492-501, 2016.
DOI : 10.1039/c5nr06261f

L. Sande, M. Sanchez, J. Montes, A. J. Wolf, M. A. Morgan et al., Liposomal encapsulation of vancomycin improves killing of methicillinresistant Staphylococcus aureus in a murine infection model, J Antimicrob Chemother, vol.67, pp.2191-2195, 2012.

S. Ghaffari, J. Varshosaz, A. Saadat, and F. Atyabi, Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles, Int J Nanomed, vol.6, pp.35-43, 2010.

X. Song, Q. Lin, L. Guo, Y. Fu, J. Han et al., Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery, Pharm Res, vol.32, pp.1741-51, 2015.

R. Pandey, S. Sharma, and G. K. Khuller, Oral solid lipid nanoparticle-based antitubercular chemotherapy, Tuberculosis (Edinb), vol.85, pp.415-435, 2005.
DOI : 10.1016/j.tube.2005.08.009

R. Pandey, A. Sharma, A. Zahoor, S. Sharma, G. K. Khuller et al., Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis, J Antimicrob Chemother, vol.52, pp.981-987, 2003.

R. Kalluru, F. Fenaroli, D. Westmoreland, L. Ulanova, A. Maleki et al.,

, Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membranebound in phago-lysosomes, J Cell Sci, vol.126, pp.3043-54, 2013.

T. Garg, G. Rath, and A. K. Goyal, Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis, Artif Cells Nanomed Biotechnol, vol.44, pp.997-1001, 2016.

M. T. Speth, U. Repnik, E. Muller, J. Spanier, U. Kalinke et al., Poly(I:C)-encapsulating nanoparticles enhance innate immune responses to the tuberculosis vaccine Bacille Calmette-Guerin (BCG) via synergistic activation of innate immune receptors, Mol Pharm, vol.14, pp.4098-112, 2017.

L. De-matteis, M. Alleva, I. Serrano-sevilla, S. Garcia-embid, G. Stepien et al., Controlling properties and cytotoxicity of chitosan nanocapsules by chemical grafting, Marine Drugs, vol.14, p.175, 2016.

L. De-matteis, D. Jary, A. Lucíad, S. García-embidg, I. Serrano-sevillag et al., New active formulations against M. tuberculosis: bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules, vol.340, pp.181-91, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02183884

Z. G. Yue, W. Wei, P. P. Lv, H. Yue, L. Y. Wang et al., Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles, Biomacromol, vol.12, pp.2440-2446, 2011.

S. D. Conner and S. L. Schmid, Regulated portals of entry into the cell, Nature, vol.422, pp.37-44, 2003.

J. F. Casella, M. D. Flanagan, and S. Lin, Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change, Nature, vol.293, pp.302-307, 1981.

L. H. Wang, K. G. Rothberg, and R. G. Anderson, Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation, J Cell Biol, vol.123, pp.1107-1124, 1993.

A. I. Ivanov, Pharmacological inhibition of endocytic pathways: is it specific enough to be useful?, Methods Mol Biol, vol.440, pp.15-33, 2008.

A. Piasek and J. Thyberg, Effects of colchicine on endocytosis of horseradish peroxidase by rat peritoneal macrophages, J Cell Sci, vol.45, pp.59-71, 1980.

S. Gordon and A. Pluddemann, Tissue macrophages: heterogeneity and functions, BMC Biol, vol.15, p.53, 2017.

R. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, and T. L. Andresen, The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH, Mol Ther, vol.21, pp.149-57, 2013.

T. Bieber, W. Meissner, S. Kostin, A. Niemann, and H. P. Elsasser, Intracellular route and transcriptional competence of polyethylenimine-DNA complexes, J Control Release, vol.82, pp.441-54, 2002.

P. R. Leroueil, S. A. Berry, K. Duthie, G. Han, V. M. Rotello et al., Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers, Nano Lett, vol.8, pp.420-424, 2008.

A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer, Exploring polyethyleniminemediated DNA transfection and the proton sponge hypothesis, J Gene Med, vol.7, pp.657-63, 2005.

O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc Natl Acad Sci USA, vol.92, pp.7297-301, 1995.

I. Richard, M. Thibault, D. Crescenzo, G. Buschmann, M. D. Lavertu et al., Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI, Biomacromol, vol.14, pp.1732-1772, 2013.

N. D. Sonawane, F. C. Szoka, and A. S. Verkman, Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes, J Biol Chem, vol.278, pp.44826-44857, 2003.

M. A. Dobrovolskaia and S. E. Mcneil, Immunological properties of engineered nanomaterials, Nat Nanotechnol, vol.2, pp.469-78, 2007.

C. Farace, P. Sanchez-moreno, M. Orecchioni, R. Manetti, F. Sgarrella et al., Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol, Sci Rep, vol.6, p.18423, 2016.

H. D. Mitchell, L. M. Markillie, W. B. Chrisler, M. J. Gaffrey, D. Hu et al., Cells respond to distinct nanoparticle properties with multiple strategies as revealed by single-cell RNA-Seq, ACS Nano, vol.10, pp.10173-85, 2016.

. Coya, 17:15 ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year ? At BMC, 2019.

G. Oberdorster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology, J Intern Med, vol.267, pp.89-105, 2010.

M. Kanehisa and S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan et al., Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res, vol.44, pp.90-97, 2016.

C. L. Bueter, C. A. Specht, and S. M. Levitz, Innate sensing of chitin and chitosan, PLoS Pathog, vol.9, p.1003080, 2013.

C. L. Bueter, C. K. Lee, V. A. Rathinam, G. J. Healy, C. H. Taron et al., Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis, J Biol Chem, vol.286, pp.35447-55, 2011.

P. J. Vandevord, H. W. Matthew, S. P. Desilva, L. Mayton, B. Wu et al., Evaluation of the biocompatibility of a chitosan scaffold in mice, J Biomed Mater Res, vol.59, pp.585-90, 2002.

G. Peluso, O. Petillo, M. Ranieri, M. Santin, A. L. Calabro et al., Chitosan-mediated stimulation of macrophage function, Biomaterials, vol.15, pp.1215-1235, 1994.

M. Look, A. Bandyopadhyay, J. S. Blum, and T. M. Fahmy, Application of nanotechnologies for improved immune response against infectious diseases in the developing world, Adv Drug Deliv Rev, vol.62, pp.378-93, 2010.

K. Shao, S. Singha, X. Clemente-casares, S. Tsai, Y. Yang et al., Nanoparticle-based immunotherapy for cancer, ACS Nano, vol.9, pp.16-30, 2015.

M. J. Robinson, D. Sancho, E. C. Slack, S. Leibundgut-landmann, R. Sousa et al., Myeloid C-type lectins in innate immunity, Nat Immunol, vol.7, pp.1258-65, 2006.

E. Blattes, A. Vercellone, H. Eutamene, C. O. Turrin, V. Theodorou et al., Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment, Proc Natl Acad Sci USA, vol.110, pp.8795-800, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00994589

T. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat Rev Immunol, vol.9, pp.465-79, 2009.

J. Nigou, C. Zelle-rieser, M. Gilleron, M. Thurnher, and G. Puzo, Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor, J Immunol, vol.166, pp.7477-85, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00177977

K. Alasoo, F. O. Martinez, C. Hale, S. Gordon, F. Powrie et al., Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription, Sci Rep, vol.5, p.12524, 2015.

D. Domizio, J. Cao, and W. , Fueling autoimmunity: type I interferon in autoimmune diseases, Expert Rev Clin Immunol, vol.9, pp.201-211, 2013.

B. S. Parker, J. Rautela, and P. J. Hertzog, Antitumour actions of interferons: implications for cancer therapy, Nat Rev Cancer, vol.16, pp.131-175, 2016.

E. M. Eshleman and L. L. Lenz, Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity, Front Immunol, vol.5, p.431, 2014.

L. Moreira-teixeira, K. Mayer-barber, A. Sher, O. Garra, and A. , Type I interferons in tuberculosis: foe and occasionally friend, J Exp Med, vol.215, pp.1273-85, 2018.

F. Mcnab, K. Mayer-barber, A. Sher, A. Wack, O. Garra et al., Type I interferons in infectious disease, Nat Rev Immunol, vol.15, pp.87-103, 2015.

S. A. Stifter and C. G. Feng, Interfering with immunity: detrimental role of type I IFNs during infection, J Immunol, vol.194, pp.2455-65, 2015.

J. D. Blischak, L. Tailleux, A. Mitrano, L. B. Barreiro, and Y. Gilad, Mycobacterial infection induces a specific human innate immune response, Sci Rep, vol.5, p.16882, 2015.

S. C. Huang, B. Everts, Y. Ivanova, D. O'sullivan, M. Nascimento et al., Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages, Nat Immunol, vol.15, pp.846-55, 2014.

D. Vats, L. Mukundan, J. I. Odegaard, L. Zhang, K. L. Smith et al., Oxidative metabolism and PGC1beta attenuate macrophage-mediated inflammation, Cell Metab, vol.4, pp.13-24, 2006.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

D. J. Mccarthy, Y. Chen, and G. K. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Res, vol.40, pp.4288-97, 2012.

H. Polena, F. Boudou, S. Tilleul, N. Dubois-colas, C. Lecointe et al., Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination, Sci Rep, vol.6, p.33162, 2016.