N. C. Seeman and H. F. Sleiman, Nat. Rev. Mater, vol.3, 2017.

F. A. Aldaye, A. L. Palmer, and H. F. Sleiman, Assembling materials with DNA as the guide, Science, vol.321, pp.1795-1799, 2008.

C. Lin, Y. Liu, H. Yan, and . Designer, Biochemistry, vol.48, pp.1663-1674, 2009.

N. C. Seeman, An overview of structural DNA nanotechnology, Mol. Biotechnol, vol.37, pp.246-257, 2007.

S. Pitchiaya and Y. Krishnan, First blueprint, now bricks: DNA as construction material on the nanoscale, Chem. Soc. Rev, vol.35, pp.1111-1121, 2006.

P. Rothlisberger, C. Gasse, and M. Hollenstein, Nucleic acid aptamers: Emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery, Int. J. Mol. Sci, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02012247

A. R. Arnold, M. A. Grodick, and J. K. Barton, DNA charge transport: From chemical principles to the cell, Cell Chem. Biol, vol.23, pp.183-197, 2016.

E. O'brien, R. M. Silva, and J. K. Barton, Redox signaling through DNA, Isr. J. Chem, vol.56, pp.705-723, 2016.

T. Liu and J. K. Barton, DNA electrochemistry through the base pairs not the sugar-phosphate backbone, J. Am. Chem. Soc, vol.127, pp.10160-10161, 2005.

, Molecules, vol.23, pp.1515-1542, 2018.

S. Buchini and C. J. Leumann, Recent improvements in antigene technology, Curr. Opin. Chem. Biol, vol.7, pp.717-726, 2003.

R. Oberbauer, Not nonsense but antisense-Applications of antisense oligonucleotides in different fields of medicine, Wien. Klin. Wochenschr, vol.109, pp.40-46, 1997.

P. S. Miller, Development of antisense and antigene oligonucleotide analogs, Prog. Nucleic Acid Res. Mol. Biol, vol.52, pp.261-291, 1996.

P. Saraswat, R. R. Soni, A. Bhandari, and B. P. Nagori, DNA as therapeutics; an update, Indian J. Pharm. Sci, vol.71, pp.488-498, 2009.

M. Szabat and R. Kierzek, Parallel-stranded DNA and RNA duplexes-Structural features and potential applications, FEBS J, vol.284, pp.3986-3998, 2017.

E. A. Cho, F. J. Moloney, H. Cai, A. Au-yeung, C. China et al., Safety and tolerability of an intratumorally injected DNAzyme, dz13, in patients with nodular basal-cell carcinoma: A phase 1 first-in-human trial, Lancet, vol.381, pp.1835-1843, 2013.

M. Hollenstein, C. J. Hipolito, C. H. Lam, and D. M. Perrin, Toward the combinatorial selection of chemically modified dnazyme RNase a mimics active against all-RNA substrates, ACS Comb. Sci, vol.15, pp.174-182, 2013.

N. Krug, J. M. Hohlfeld, A. Kirsten, O. Kornmann, K. M. Beeh et al., Allergen-induced asthmatic responses modified by a gata3-specific DNAzyme, N. Engl. J. Med, vol.372, 1987.

W. Zhou, J. Ding, J. Liu, and . Theranostic, , vol.7, pp.1010-1025, 2017.

W. Xu, K. M. Chan, and E. T. Kool, Fluorescent nucleobases as tools for studying DNA and RNA, Nat. Chem, vol.9, pp.1043-1055, 2017.

Y. Wang, E. Liu, C. H. Lam, and D. M. Perrin, A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover, Chem. Sci, vol.9, pp.1813-1821, 2018.

M. Hollenstein, The chemical repertoire of DNAzymes, Molecules, vol.20, pp.20777-20804, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01372294

M. H. Caruthers, The chemical synthesis of DNA/RNA: Our gift to science, J. Biol. Chem, vol.288, pp.1420-1427, 2013.

A. Gupta, A. Mishra, and N. Puri, Peptide nucleic acids: Advanced tools for biomedical applications, J. Biotechnol, vol.259, pp.148-159, 2017.

D. Agata, R. Giuffrida, M. C. Spoto, and G. , Peptide nucleic acid-based biosensors for cancer diagnosis, vol.22, 1951.

M. M. Moghaddam, A. Mirhosseini, M. Heiat, H. S. Rad, R. Mirnejad et al., Diagnostic and therapeutic applications of peptide nucleic acid in medical microbiology, vol.29, pp.76-88, 2017.

J. C. Wu, Q. C. Meng, H. M. Ren, H. T. Wang, J. Wu et al., Recent advances in peptide nucleic acid for cancer bionanotechnology, Acta Pharmacol. Sin, vol.38, pp.798-805, 2017.

T. Vilaivan, Fluorogenic pna probes, Beilstein J. Org. Chem, vol.14, pp.253-281, 2018.

I. Hirao, M. Kimoto, and R. Yamashige, Natural versus artificial creation of base pairs in DNA: Origin of nucleobases from the perspectives of unnatural base pair studies, Acc. Chem. Res, vol.45, pp.2055-2065, 2012.

M. Kimoto, R. S. Cox, and I. Hirao, Unnatural base pair systems for sensing and diagnostic applications, Expert Rev. Mol. Diagn, vol.11, pp.321-331, 2011.

N. Saito-tarashima and N. Minakawa, Unnatural base pairs for synthetic biology, Chem. Pharm. Bull, vol.66, pp.132-138, 2018.

A. W. Feldman and F. E. Romesberg, Expansion of the genetic alphabet: A chemist's approach to synthetic biology, Acc. Chem. Res, vol.51, pp.394-403, 2018.

E. Uhlmann and A. Peyman, Antisense oligonucleotides-A new therapeutic principle, Chem. Rev, vol.90, pp.543-584, 1990.

J. Kurreck, Antisense technologies-Improvement through novel chemical modifications, Eur. J. Biochem, vol.270, pp.1628-1644, 2003.

C. M. Niemeyer, Bioconjugation Protocols: Strategies and Methods

, Molecules, vol.23, pp.1515-1543, 2018.

M. Taskova, A. Mantsiou, and K. Astakhova, Synthetic nucleic acid analogues in gene therapy: An update for peptide-oligonucleotide conjugates, vol.18, pp.1671-1682, 2017.

Z. J. Lesnikowski, DNA as platform for new biomaterials. Metal-containing nucleic acids, Curr. Org. Chem, vol.11, pp.355-381, 2007.

F. Shao and J. K. Barton, Long-range electron and hole transport through DNA with tethered cyclometalated iridium(III) complexes, J. Am. Chem. Soc, vol.129, pp.14733-14738, 2007.

J. Kudr, L. Nejdl, S. Skalickova, B. Ruttkay-nedecky, M. A. Rodrigo et al., Plasmid HIV p24 gene detection on mercury film electrode using osmium labelling, Int. J. Electrochem, vol.9, pp.3409-3418, 2014.

J. K. Barton, E. D. Olmon, and P. A. Sontz, Metal complexes for DNA-mediated charge transport, Coord. Chem. Rev, vol.255, pp.619-634, 2011.

B. Elias and A. Kirsch-de-mesmaeker, Photo-reduction of polyazaaromatic ru(II) complexes by biomolecules and possible applications, Coord. Chem. Rev, vol.250, pp.1627-1641, 2006.

A. L. Noffke, A. Habtemariam, A. M. Pizarro, and P. J. Sadler, Designing organometallic compounds for catalysis and therapy, Chem. Commun, vol.48, pp.5219-5246, 2012.

M. R. Gill and J. A. Thomas, Ruthenium(II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics, Chem. Soc. Rev, vol.41, pp.3179-3192, 2012.

G. R. Newkome, T. J. Cho, C. N. Moorefield, G. R. Baker, R. Cush et al., Self-and directed assembly of hexaruthenium macrocycles, Angew. Chem. Int. Ed, vol.38, pp.3717-3721, 1999.

W. H. Ang, A. Casini, G. Sava, and P. J. Dyson, Organometallic ruthenium-based antitumor compounds with novel modes of action, J. Organomet. Chem, vol.696, pp.989-998, 2011.

C. Moucheron, From cisplatin to photoreactive Ru complexes: Targeting DNA for biomedical applications, New J. Chem, vol.33, pp.235-245, 2009.

J. Ghesquiere, S. Le-gac, L. Marcelis, C. Moucheron, and A. Kirsch-de-mesmaeker, What does the future hold for photo-oxidizing ru-ii complexes with polyazaaromatic ligands in medicinal chemistry?, Curr. Top. Med. Chem, vol.12, pp.185-196, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00804920

V. Brabec and O. Novakova, DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist. Updates, vol.9, pp.111-122, 2006.

N. Nickita, G. Gasser, A. M. Bond, and L. Spiccia, Synthesis, spectroscopic properties and electrochemical oxidation of Ru(II)-polypyridyl complexes attached to a peptide nucleic acid monomer backbone, Eur. J. Inorg. Chem, pp.2179-2186, 2009.

T. Joshi, M. Patra, L. Spiccia, and G. Gasser, Di-heterometalation of thiol-functionalized peptide nucleic acids, Artif. DNA PNA XNA, vol.4, pp.11-18, 2013.

T. Joshi, G. J. Barbante, P. S. Francis, C. F. Hogan, A. M. Bond et al., Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: Multimodal biosensing tools with enhanced duplex stability, Inorg. Chem, vol.51, pp.3302-3315, 2012.

T. Joshi, G. J. Barbante, P. S. Francis, C. F. Hogan, A. M. Bond et al., Electrochemiluminescent peptide nucleic acid-like monomers containing Ru(II)-dipyridoquinoxaline and Ru(II)-dipyridophenazine complexes, Inorg. Chem, vol.50, pp.12172-12183, 2011.

T. Joshi, G. Gasser, L. L. Martin, and L. Spiccia, Specific uptake and interactions of peptide nucleic acid derivatives with biomimetic membranes, vol.2, pp.4703-4712, 2012.

J. C. Verheijen, G. A. Van-der-marel, J. H. Van-boom, and N. Metzler-nolte, Transition metal derivatives of peptide nucleic acid (PNA) oligomers: Synthesis, characterization, and DNA binding, Bioconj. Chem, vol.11, pp.741-743, 2000.

G. Gasser, A. M. Sosniak, and N. Metzler-nolte, Metal-containing peptide nucleic acid conjugates, Dalton Trans, vol.40, pp.7061-7076, 2011.

T. Kubar and M. Elstner, What governs the charge transfer in DNA? The role of DNA conformation and environment, J. Phys. Chem. B, vol.112, pp.8788-8798, 2008.

D. A. Malyshev and F. E. Romesberg, The expanded genetic alphabet, Angew. Chem. Int. Ed, vol.54, pp.11930-11944, 2015.

B. Giese, Electron transfer through DNA and peptides, Bioorg. Med. Chem, vol.14, pp.6139-6143, 2006.

, Molecules, vol.23, pp.1515-1544, 2018.

B. Effi, L. Yu, S. Caroline, U. Andreaseasd, and W. Hans-achim, Acceleration of long-range photoinduced electron transfer through DNA by hydroxyquinolines as artificial base pairs, ChemPhysChem, vol.16, pp.1607-1612, 2015.

B. Giese, Electron transfer in DNA, Curr. Opin. Chem. Biol, vol.6, pp.612-618, 2002.

F. Boussicault and M. Robert, Electron transfer in DNA and in DNA-related biological processes. Electrochemical insights, Chem. Rev, vol.108, pp.2622-2645, 2008.

M. Bixon and J. Jortner, Incoherent charge hopping and conduction in DNA and long molecular chains, Chem. Phys, vol.319, pp.273-282, 2005.

A. Nitzan, Electron transmission through molecules and molecular interfaces, Annu. Rev. Phys. Chem, vol.52, pp.681-750, 2001.

B. Giese, J. Amaudrut, A. Köhler, M. Spormann, and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature, vol.412, pp.318-320, 2001.

K. Siriwong and A. A. Voityuk, Electron transfer in DNA, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.2012, pp.780-794

J. C. Genereux and J. K. Barton, Mechanisms for DNA charge transport, Chem. Rev, vol.110, pp.1642-1662, 2010.

Y. A. Berlin, I. V. Kurnikov, D. Beratan, M. A. Ratner, and A. L. Burin, DNA electron transfer processes: Some theoretical notions

G. B. Schuster and E. , , pp.1-36, 2004.

R. Venkatramani, S. Keinan, A. Balaeff, and D. N. Beratan, Nucleic acid charge transfer: Black, white and gray, Coord. Chem. Rev, vol.255, pp.635-648, 2011.

Y. Jenkins and J. K. Barton, A sequence-specific molecular light switch tethering of an oligonucleotide to a dipyridophenazine complex of Ruthenium(II), J. Am. Chem. Soc, vol.114, pp.8136-8137, 1992.

C. J. Murphy and J. K. Barton, Ruthenium complexes as luminescent reporters of DNA, Methods Enzymol, vol.226, pp.576-594, 1993.

E. J. Olson, D. Hu, A. Hörmann, A. M. Jonkman, M. R. Arkin et al., First observation of the key intermediate in the "light-switch" mechanism of [Ru(phen) 2 dppz] 2+, J. Am. Chem. Soc, vol.119, pp.11458-11467, 1997.

A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, and J. K. Barton, Molecular light switch for DNA: Ru(bpy) 2 (dppz) 2+, J. Am. Chem. Soc, vol.112, pp.4960-4962, 1990.

P. Lincoln, A. Broo, and B. Norden, Diastereomeric DNA-binding geometries of intercalated ruthenium(II) trischelates probed by linear dichroism: [Ru(phen)2dppz] 2+ and ru(phen) 2 bdppz 2+, J. Am. Chem. Soc, vol.118, pp.2644-2653, 1996.

T. J. Meade and J. F. Kayyem, Electron transfer through DNA: Site-specific modification of duplex DNA with ruthenium donors and acceptors, Angew. Chem. Int. Ed, vol.34, pp.352-354, 1995.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann et al., Long-range photoinduced electron transfer through a DNA helix, Science, vol.262, pp.1025-1029, 1993.

M. J. Park, M. Fujitsuka, K. Kawai, and T. Majima, Direct measurement of the dynamics of excess electron transfer through consecutive thymine sequence in DNA, J. Am. Chem. Soc, vol.133, pp.15320-15323, 2011.

Y. Osakada, K. Kawai, M. Fujitsuka, and T. Majima, Kinetics of charge transfer in DNA containing a mismatch, Nucleic Acids Res, vol.36, pp.5562-5570, 2008.

P. Fromherz and B. Rieger, Photoinduced electron transfer in DNA matrix from intercalated ethidium to condensed methylviologen, J. Am. Chem. Soc, vol.108, pp.5361-5362, 1986.

M. Purugganan, C. Kumar, N. Turro, and J. Barton, Accelerated electron transfer between metal complexes mediated by DNA, Science, vol.241, pp.1645-1649, 1988.

A. M. Brun and A. Harriman, Dynamics of electron transfer between intercalated polycyclic molecules: Effect of interspersed bases, J. Am. Chem. Soc, vol.114, pp.3656-3660, 1992.

U. Diederichsen, Charge transfer in DNA: A controversy, Angew. Chem. Int. Ed, vol.36, pp.2317-2319, 1997.

C. V. Kumar, J. K. Barton, and N. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc, vol.107, pp.5518-5523, 1985.

J. K. Barton, J. M. Goldberg, C. V. Kumar, and N. J. Turro, Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: Tuning the stereoselectivity, J. Am. Chem. Soc, vol.108, pp.2081-2088, 1986.

M. R. Arkin, E. D. Stemp, S. C. Pulver, and J. K. Barton, Long-range oxidation of guanine by Ru(III) in duplex DNA, Chem. Biol, vol.4, pp.389-400, 1997.

E. D. Stemp and J. K. Barton, The flash-quench technique in protein-DNA electron transfer: Reduction of the guanine radical by ferrocytochrome c, Inorg. Chem, vol.39, pp.3868-3874, 2000.

A. M. Fleming, O. Alshykhly, J. Zhu, J. G. Muller, and C. J. Burrows, Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products, Chem. Res. Toxicol, vol.28, pp.1292-1300, 2015.

J. Langmaier, Z. Samec, E. Samcova, P. Hobza, and D. Reha, Origin of difference between one-electron redox potentials of guanosine and guanine: Electrochemical and quantum chemical study, J. Phys. Chem. B, vol.108, pp.15896-15899, 2004.

P. K. Bhattacharya and J. K. Barton, Influence of intervening mismatches on long-range guanine oxidation in DNA duplexes, J. Am. Chem. Soc, vol.123, pp.8649-8656, 2001.

D. J. Hurley and Y. Tor, Metal-containing oligonucleotides: Solid-phase synthesis and luminescence properties, J. Am. Chem. Soc, vol.120, pp.2194-2195, 1998.

D. Tzalis and Y. Tor, Coordination compounds as building blocks: Single-step synthesis of multi-ruthenium(II) complexes, Chem. Commun, pp.1043-1044, 1996.

P. J. Connors, D. Tzalis, A. L. Dunnick, and Y. Tor, Coordination compounds as building blocks: Single-step synthesis of heteronuclear multimetallic complexes containing Ru(II) and Os(II), Inorg. Chem, vol.37, pp.1121-1123, 1998.

D. J. Hurley and Y. Tor, Ru(II) and Os(II) nucleosides and oligonucleotides: Synthesis and properties, J. Am. Chem. Soc, vol.9, pp.3749-3762, 2002.

D. J. Hurley and Y. Tor, Donor/acceptor interactions in systematically modified Ru(II)-Os(II) oligonucleotides, J. Am. Chem. Soc, vol.124, pp.13231-13241, 2002.

M. Hollenstein, Nucleoside triphosphates-Building blocks for the modification of nucleic acids, Molecules, vol.17, pp.13569-13591, 2012.

M. Hocek, Synthesis of base-modified 2-Building beoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology, J. Org. Chem, vol.79, pp.9914-9921, 2014.

H. Weizman and Y. Tor, Redox-active metal-containing nucleotides: Synthesis, tunability, and enzymatic incorporation into DNA, J. Am. Chem. Soc, vol.124, pp.1568-1569, 2002.

K. E. Bujold, A. Lacroix, and H. F. Sleiman, DNA nanostructures at the interface with biology, vol.4, pp.495-521, 2018.

P. Chidchob and H. F. Sleiman, Recent advances in DNA nanotechnology, Curr. Opin. Chem. Biol, vol.46, pp.63-70, 2018.

I. Vargas-baca, D. Mitra, H. J. Zulyniak, J. Banerjee, and H. F. Sleiman, Solid-phase synthesis of transition metal linked, branched oligonucleotides, Angew. Chem. Int. Ed, vol.40, pp.4629-4632, 2001.

M. J. Damha, K. Ganeshan, R. H. Hudson, and S. V. Zabarylo, Solid-phase synthesis of branched oligoribonucleotides related to messenger-RNA splicing intermediates, Nucleic Acids Res, vol.20, pp.6565-6573, 1992.

N. C. Seeman, DNA nanotechnology: Novel DNA constructions, Annu. Rev. Biophys. Biomol. Struct, vol.27, pp.225-248, 1998.

D. Mitra, N. Di-cesare, and H. F. Sleiman, Self-assembly of cylclic metal-DNA nanostuctures using ruthenium tris(bipyridine)-branched oligonucleotides, Angew. Chem. Int. Ed, vol.43, pp.5804-5808, 2004.

K. M. Stewart and L. W. Mclaughlin, Design and synthesis of DNA-tethered ruthenium complexes that self-assemble into linear arrays, Chem. Commun, pp.2934-2935, 2003.

E. C. Constable and M. D. Ward, Synthesis and coordination behavior of 6 ,6"-bis(2-pyridyl)-2,2-4,4"-2",2"quaterpyridine-Back-to-back 2,2-6 ,2"-terpyridine, J. Chem. Soc. Dalton Trans, pp.1405-1409, 1990.

J. Irvoas, A. Noirot, N. Chouini-lalanne, O. Reynes, J. C. Garrigues et al., Programmable multimetallic linear nanoassemblies of ruthenium-DNA conjugates, vol.2, pp.9538-9542, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00925042

, Molecules, vol.23, pp.1515-1546, 2018.

E. Terpetschnig, H. Szmacinski, H. Malak, and J. R. Lakowicz, Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics, Biophys. J, vol.68, pp.342-350, 1995.

J. Irvoas, A. Noirot, N. Chouini-lalanne, O. Reynes, and V. Sartor, DNA three-way junction-ruthenium complex assemblies, New J. Chem, vol.37, pp.2324-2329, 2013.

A. Calogero, G. A. Hospers, and N. H. Mulder, Synthetic oligonucleotides: Useful molecules? A review, Pharm. World Sci, vol.19, pp.264-268, 1997.

O. Hidenori, T. Yosuke, and S. Shigeki, Aminopyridinyl-Pseudodeoxycytidine derivatives selectively stabilize antiparallel triplex DNA with multiple cg inversion sites, Angew. Chem. Int. Ed, vol.55, pp.12445-12449, 2016.

G. N. Grimm, A. S. Boutorine, P. Lincoln, B. Norden, and C. Helene, Formation of DNA triple helices by an oligonucleotide conjugated to a fluorescent ruthenium complex, ChemBioChem, vol.3, pp.324-331, 2002.

A. E. Friedman, C. V. Kumar, N. J. Turro, and J. K. Barton, Luminescence of ruthenium(II) polypyridyls: Evidence for intercalative binding to z-DNA, Nucleic Acids Res, vol.19, pp.2595-2602, 1991.

C. Hiort, P. Lincoln, and B. Norden, DNA-binding of delta-ru(phen)2dppz2+ and lambda-ru(phen)2dppz2+, J. Am. Chem. Soc, vol.115, pp.3448-3454, 1993.

G. C. Silver, J. S. Sun, C. H. Nguyen, A. S. Boutorine, E. Bisagni et al., Stable triple-helical DNA complexes formed by benzopyridoindole-and benzopyridoquinoxaline-oligonucleotide conjugates, J. Am. Chem. Soc, vol.119, pp.263-268, 1997.

G. C. Silver, C. H. Nguyen, A. S. Boutorine, E. Bisagni, T. Garestier et al., Conjugates of oligonucleotides with triplex-specific intercalating agents. Stabilization of triple-helical DNA in the promoter region of the gene for the alpha-subunit of interleukin 2 (IL-2r alpha), Bioconj. Chem, vol.8, pp.15-22, 1997.

G. N. Grimm, A. S. Boutorine, and C. Helene, Rapid routes of synthesis of oligonucleotide conjugates from non-protected oligonucleotides and ligands possessing different nucleophilic or electrophilic functional groups, Nucleos. Nucleot. Nucl, vol.19, pp.1943-1965, 2000.

S. D. Choi, M. S. Kim, S. K. Kim, P. Lincoln, E. Tuite et al., Binding mode of [ruthenium(II) (1,10-phenanthroline) 2 L] 2+ with poly(dT*dA-dT) triplex. Ligand size effect on third-strand stabilization, Biochemistry, vol.36, pp.214-223, 1997.

A. Khvorova and J. K. Watts, The chemical evolution of oligonucleotide therapies of clinical utility, Nat. Biotechnol, vol.35, pp.238-248, 2017.

A. Istrate, A. Katolik, A. Istrate, and C. J. Leumann, 2 ?-fluoro-tricyclo nucleic acids (2 F-tc-ANA): Thermal duplex stability, structural studies, and RNase H activation, Chem. Eur. J, vol.23, pp.10310-10318, 2017.

C. F. Bennett, B. F. Baker, N. Pham, E. Swayze, and R. S. Geary, Pharmacology of antisense drugs, Annu. Rev. Pharmacol. Toxicol, vol.57, pp.81-105, 2017.

P. E. Rakoczy, Antisense DNA technology, Vision Research Protocols, pp.89-104, 2001.
DOI : 10.1385/1-59259-085-3:89

A. B. Tossi and J. M. Kelly, A study of some polypyridylruthenium(II) complexes as DNA binders and photocleavage reagents, Photochem. Photobiol, vol.49, pp.545-556, 1989.

J. P. Lecomte, A. Kirsch-de-mesmaeker, J. M. Kelly, A. B. Tossi, and H. Gorner, Photoinduced electron-transfer from nucleotides to ruthenium-tris-1,4,5,8-tetraazaphenanthrene-Model for photosensitized DNA oxidation, Photochem. Photobiol, vol.55, pp.681-689, 1992.

C. G. Coates, P. Callaghan, J. J. Mcgarvey, J. M. Kelly, L. Jacquet et al., Spectroscopic studies of structurally similar DNA-binding ruthenium(II) complexes containing the dipyridophenazine ligand, J. Mol. Struct, vol.598, pp.15-25, 2001.

J. M. Kelly, M. M. Feeney, A. B. Tossi, J. P. Lecomte, and A. Kirsch-de-mesmaeker, Interaction of tetra-azaphenanthrene ruthenium complexes with DNA and oligonucleotides-A photophysical and photochemical investigation. Anti-Cancer Drug Design, vol.5, pp.69-75, 1990.

L. Herman, S. Ghosh, E. Defrancq, and A. Kirsch-de-mesmaeker, Ru(II) complexes and light: Molecular tools for biomolecules, J. Phys. Org. Chem, vol.21, pp.670-681, 2008.
DOI : 10.1002/poc.1355

L. Jacquet, J. M. Kelly, and A. Kirsch-de-mesmaeker, Photoadduct between tris(1,4,5,8tetraazaphenanthrene)ruthenium(II) and guanosine-monophosphate-A model for a new mode of covalent binding of metal-complexes to DNA, J. Chem. Soc. Chem. Commun, pp.913-914, 1995.

L. Jacquet, R. J. Davies, A. Kirsch-de-mesmaeker, and J. M. Kelly, Photoaddition of Ru(tap) 2 (bpy) 2+ to DNA: A new mode of covalent attachment of metal complexes to duplex DNA, J. Am. Chem. Soc, vol.119, pp.11763-11768, 1997.

L. Troian-gautier, E. Mugeniwabagara, L. Fusaro, C. Moucheron, A. Kirsch-de-mesmaeker et al., , p.3

2. ]. , Inorg. Chem, vol.56, pp.1794-1803, 2017.

L. Troian-gautier, E. Mugeniwabagara, L. Fusaro, E. Cauet, A. Kirsch-de-mesmaeker et al., Photo-cidnp reveals different protonation sites depending on the primary step of the photoinduced electron-/proton-transfer process with Ru(II) polyazaaromatic complexes, J. Am. Chem. Soc, vol.139, pp.14909-14912, 2017.

L. Ghizdavu, F. Pierard, S. Rickling, S. Aury, M. Surin et al., Oxidizing Ru(II) complexes as irreversible and specific photo-cross-linking agents of oligonucleotide duplexes, Inorg. Chem, vol.48, pp.10988-10994, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01659016

O. Lentzen, E. Defrancq, J. F. Constant, S. Schumm, D. Garcia-fresnadillo et al., Determination of DNA guanine sites forming photo-adducts with Ru(II)-labeled oligonucleotides; DNA polymerase inhibition by the resulting photo-crosslinking, J. Biol. Inorg. Chem, vol.9, pp.100-108, 2004.

J. P. Lecomte, A. Kirsch-de-mesmaeker, M. Demeunynck, and J. Lhomme, Synthesis and characterization of a new DNA-binding bifunctional Ruthenium(II) complex, J. Chem. Soc. Faraday Trans, vol.89, pp.3261-3269, 1993.

M. Villien, S. Deroo, E. Gicquel, E. Defrancq, C. Moucheron et al., The oxime bond formation as an efficient tool for the conjugation of ruthenium complexes to oligonucleotides and peptides, Tetrahedron, vol.63, pp.11299-11306, 2007.

E. Trevisiol, A. Renard, E. Defrancq, and J. Lhomme, Fluorescent labelling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction, Nucleos. Nucleot. Nucl, vol.19, pp.1427-1439, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01848503

D. Forget, D. Boturyn, E. Defrancq, J. Lhomme, and P. Dumy, Highly efficient synthesis of peptide-oligonucleotide conjugates: Chemoselective oxime and thiazolidine formation, Chem. Eur. J, vol.7, pp.3976-3984, 2001.

Y. Singh, N. Spinelli, and E. Defrancq, Chemical strategies for oligonucleotide-conjugates synthesis, Curr. Org. Chem, vol.12, pp.263-290, 2008.

D. Forget, O. Renaudet, E. Defrancq, and P. Dumy, Efficient preparation of carbohydrate-oligonucleotide conjugates (COCs) using oxime bond formation, Tetrahedron Lett, vol.42, pp.7829-7832, 2001.

E. J. Lee, C. Mari, M. Gel, J. Gardiner, G. Gasser et al., Immobilisation of multiple ligands using peptide nucleic acids: A strategy to prepare the microenvironment for cell culture, Chem. Select, vol.2, pp.4028-4032, 2017.

S. Deroo, E. Defrancq, C. Moucheron, A. Kirsch-de-mesmaeker, and P. Dumy, Synthesis of an oxyamino-containing phenanthroline derivative for the efficient preparation of phenanthroline oligonucleotide oxime conjugates, Tetrahedron Lett, vol.44, pp.8379-8382, 2003.

J. M. Tronchet, G. Zosimolandolfo, M. Balkadjian, A. Ricca, M. Zsely et al., New types of spin-labeled sugar and nucleoside analogs-Pyrrolidine, morpholine and piperidine n-oxyls, Tetrahedron Lett, vol.32, pp.4129-4132, 1991.

A. Kirsch-de-mesmaeker, L. Jacquet, and J. Nasielski, Ruthenium(II) complexes of 1,4,5,8-tetraazaphenanthrene (TAP) and 2,2-bipyridine (bpy)-Ground-state and excited-state basicities of Ru 2+ (bpy) n (TAP) 3-n (n = 0,1,2): Their luminescence quenching by organic buffers, Inorg. Chem, vol.27, pp.4451-4458, 1988.

L. Gac, S. Rickling, S. Gerbaux, P. Defrancq, E. Moucheron et al., A photoreactive Ruthenium(II) complex tethered to a guanine-containing oligonucleotide: A biomolecular tool that behaves as a "seppuku molecule, Angew. Chem. Int. Ed, vol.48, pp.1122-1125, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01658938

S. Deroo, S. Le-gac, S. Ghosh, M. Villien, P. Gerbaux et al., Oligonucleotide duplexes with tethered photoreactive Ruthenium(II) complexes: Influence of the ligands and their linker on the photoinduced electron transfer and crosslinking processes of the two strands, Eur. J. Inorg. Chem, pp.524-532, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01659008

, Molecules, vol.23, p.34, 2018.

L. Marcelis, J. Ghesquiere, K. Garnir, A. Kirsch-de-mesmaeker, and C. Moucheron, Photo-oxidizing Ru-II complexes and light: Targeting biomolecules via photoadditions, Coord. Chem. Rev, vol.256, pp.1569-1582, 2012.

L. Marcelis, M. Surin, R. Lartia, C. Moucheron, E. Defrancq et al., Specificity of light-induced covalent adduct formation between Ru-II oligonucleotide conjugates and target sequences for gene silencing applications, Eur. J. Inorg. Chem, pp.3016-3022, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01652404

A. Reschner, S. Bontems, S. Le-gac, J. Lambermont, L. Marcelis et al., Ruthenium oligonucleotides, targeting HPV16 E6 oncogene, inhibit the growth of cervical cancer cells under illumination by a mechanism involving p53, Gene Ther, vol.20, pp.435-443, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01086750

J. M. Walboomers, M. V. Jacobs, M. M. Manos, F. X. Bosch, J. A. Kummer et al., Human papillomavirus is a necessary cause of invasive cervical cancer worldwide, J. Pathol, vol.189, pp.12-19, 1999.

M. S. Lechner, D. H. Mack, A. B. Finicle, T. Crook, K. H. Vousden et al., Human papillomavirus e6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription, EMBO J, vol.11, pp.3045-3052, 1992.

M. Thomas, D. Pim, and L. Banks, The role of the e6-p53 interaction in the molecular pathogenesis of HPV, Oncogene, vol.18, pp.7690-7700, 1999.

B. Vogelstein, D. Lane, and A. J. Levine, Surfing the p53 network, Nature, vol.408, pp.307-310, 2000.

B. Durham and D. V. Pinnick, 2-bipyridine) ruthenium(II) complexes, Photochemistry of bis, vol.184, p.190, 1982.

M. Vrabel, R. Pohl, B. Klepetarova, I. Votruba, and M. Hocek, Synthesis of 2-deoxyadenosine nucleosides bearing bipyridine-type ligands and their Ru-complexes in position 8 through cross-coupling reactions, Org. Biomol. Chem, vol.5, pp.2849-2857, 2007.

M. Vrabel, M. Hocek, L. Havran, M. Fojta, I. Votruba et al., Purines bearing phenanthroline or bipyridine ligands and their Ru-II complexes in position 8 as model compounds for electrochemical DNA labeling-Synthesis, crystal structure, electrochemistry, quantum chemical calculations, cytostatic and antiviral activity, Eur. J. Inorg. Chem, pp.1752-1769, 2007.

S. Jager, G. Rasched, H. Kornreich-leshem, M. Engeser, O. Thum et al., A versatile toolbox for variable DNA functionalization at high density, J. Am. Chem. Soc, vol.127, pp.15071-15082, 2005.

P. Capek, H. Cahova, R. Pohl, M. Hocek, C. Gloeckner et al., An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR, Chem. Eur. J, vol.13, pp.6196-6203, 2007.

A. Olszewska, R. Pohl, and M. Hocek, Trifluoroacetophenone-linked nucleotides and DNA for studying of DNA-protein interactions by 19F NMR spectroscopy, J. Org. Chem, vol.82, pp.11431-11439, 2017.

M. Hollenstein, Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues-Synthesis and biochemical characterization, Org. Biomol. Chem, vol.11, pp.5162-5172, 2013.

H. Audrey, B. Karin, D. Kay, and M. Andreas, Structural basis for the KlenTaq DNA polymerase catalysed incorporation of alkenectural basis for tdified nucleotides, Chem. Eur. J, vol.23, pp.2109-2118, 2017.

A. Hottin and A. Marx, Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases, Acc. Chem. Res, vol.49, pp.418-427, 2016.

F. Seela, M. Zulauf, H. Rosemeyer, and H. Reuter, The DNA-stabilising nucleoside 7-iodo-2-deoxytubercidin: Its structure in the solid state and in solution, J. Chem. Soc. Perkin Trans, vol.2, pp.2373-2376, 1996.

M. Vrabel, R. Pohl, I. Votruba, M. Sajadi, S. A. Kovalenko et al., Synthesis and photophysical properties of 7-deaza-2-deoxyadenosines bearing bipyridine ligands and their Ru(II)-complexes in position 7, Org. Biomol. Chem, vol.6, pp.2852-2860, 2008.

L. Kalachova, R. Pohl, and M. Hocek, Synthesis of nucleoside mono-and triphosphates bearing oligopyridine ligands, their incorporation into DNA and complexation with transition metals, Org. Biomol. Chem, vol.10, pp.49-55, 2012.

, Molecules, vol.23, p.34, 2018.

L. Kalachova, R. Pohl, L. Bednarova, J. Fanfrlik, and M. Hocek, Synthesis of nucleosides and dntps bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations, Org. Biomol. Chem, vol.11, pp.78-89, 2013.

M. Vrabel, P. Horakova, H. Pivonkova, L. Kalachova, H. Cernocka et al., Base-modified DNA labeled by [Ru(bpy) 3 ] 2+ and [Os(bpy) 3 ] 2+ complexes: Construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications, Chem. Eur. J, vol.15, pp.1144-1154, 2009.

T. Kovacs and L. Otvos, Simple synthesis of 5-vinyl-and 5-ethynyl-2-deoxyuridine-5-triphosphates, Tetrahedron Lett, vol.29, pp.4525-4528, 1988.

H. Cahova, L. Havran, P. Brazdilova, H. Pivonkova, R. Pohl et al., Aminophenyl-and nitrophenyl-labeled nucleoside triphosphates: Synthesis, enzymatic incorporation, and electrochemical detection, Angew. Chem. Int. Ed, vol.47, pp.2059-2062, 2008.

M. G. Mcdougall, L. P. Hosta, S. Kumar, and C. W. Fuller, Analysis of DNA sequencing reaction products made with 7-halo-7-deaza-2-deoxyguanosine-5-triphosphate, Nucleos. Nucleot, vol.18, pp.1009-1011, 1999.

M. G. Mcdougall, L. Sun, I. Livshin, L. P. Hosta, B. F. Mcardle et al., Analogs of guanine nucleoside triphosphates for sequencing applications, Nucleos. Nucleot. Nucl, vol.20, pp.501-506, 2001.

S. Kosuri and G. M. Church, Large-scale de novo DNA synthesis: Technologies and applications, Nat. Methods, vol.11, pp.499-507, 2014.

D. Dziuba, P. Jurkiewicz, M. Cebecauer, M. Hof, and M. Hocek, A rotational BODIPY nucleotide: An environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy, Angew. Chem. Int. Ed, vol.55, pp.174-178, 2016.

A. B. Neef, L. Pernot, V. N. Schreier, L. Scapozza, and N. W. Luedtke, A bioorthogonal chemical reporter of viral infection, Angew. Chem. Int. Ed, vol.54, pp.7911-7914, 2015.

M. Bañuls, P. Jiménez-meneses, A. Meyer, J. Vasseur, F. Morvan et al., Improved performance of DNA microarray multiplex hybridization using probes anchored at several points by thiol-ene or thiol-yne coupling chemistry, Bioconj. Chem, vol.28, pp.496-506, 2017.

P. Rothlisberger, F. Levi-acobas, I. Sarac, B. Baron, P. England et al., Facile immobilization of DNA using an enzymatic his-tag mimic, Chem. Commun, vol.53, pp.13031-13034, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02012223