A. Goyenvalle, G. Griffith, A. Babbs, S. El-andaloussi, K. Ezzat et al., Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers, Nat. Med, vol.21, pp.270-275, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165556

A. Khvorova and J. K. Watts, The chemical evolution of oligonucleotide therapies of clinical utility, Nat. Biotechnol, vol.35, pp.238-248, 2017.

P. Wang, T. A. Meyer, V. Pan, P. K. Dutta, and Y. Ke, The beauty and utility of DNA origami, vol.2, pp.359-382, 2017.

M. Hollenstein, The chemical repertoire of DNAzymes, Molecules, vol.20, pp.20777-20804, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01372294

S. K. Silverman, Catalyic DNA: Scope, applications, and biochemistry of deoxyribozymes, Trends Biochem. Sci, vol.41, pp.595-609, 2016.

A. Rioz-martinez and G. Roelfes, DNA-based hybrid catalysis, Curr. Opin. Chem. Biol, vol.25, pp.80-87, 2015.

Y. Y. Yu, C. Liang, Q. X. Lv, D. F. Li, X. G. Xu et al., Molecular selection, modification and development of therapeutic oligonucleotide aptamers, Int. J. Mol. Sci, vol.17, 2016.

A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, vol.346, pp.818-822, 1990.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, pp.505-510, 1990.

L. Q. Zhang, S. Wan, Y. Jiang, Y. Y. Wang, T. Fu et al., Molecular elucidation of disease biomarkers at the interface of chemistry and biology, J. Am. Chem. Soc, vol.139, pp.2532-2540, 2017.

N. Sedlyarova, P. Rescheneder, A. Magan, N. Popitsch, N. Rziha et al., Natural RNA polymerase aptamers regulate transcription in E. coli, Mol. Cell, vol.67, pp.30-43, 2017.

G. F. Joyce, Forty years of in vitro evolution, Angew. Chem. Int. Ed, vol.46, pp.6420-6436, 2007.

D. L. Robertson and G. F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, vol.344, pp.467-468, 1990.

F. Pfeiffer and G. Mayer, Selection and biosensor application of aptamers for small molecules

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, Selection of single-stranded-DNA molecules that bind and inhibit human thrombin, Nature, vol.355, pp.564-566, 1992.

S. M. Nimjee, R. R. White, R. C. Becker, and B. A. Sullenger, Aptamers as therapeutics, Annu. Rev. Pharmacol. Toxicol, vol.57, pp.61-79, 2017.

M. Chen, Y. Y. Yu, F. Jiang, J. W. Zhou, Y. S. Li et al., Development of cell-SELEX technology and its application in cancer diagnosis and therapy, Int. J. Mol. Sci, vol.17, 2016.

K. Sefah, D. Shangguan, X. L. Xiong, M. B. O'donoghue, and W. H. Tan, Development of DNA aptamers using cell-SELEX, Nat. Protoc, vol.5, pp.1169-1185, 2010.
DOI : 10.1038/nprot.2010.66

D. Shangguan, Y. Li, Z. W. Tang, Z. H. Cao, H. W. Chen et al., Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci, vol.103, pp.11838-11843, 2006.
DOI : 10.1073/pnas.0602615103

URL : http://www.pnas.org/content/103/32/11838.full.pdf

J. F. Lee, J. R. Hesselberth, L. A. Meyers, and A. D. Ellington, Aptamer database, Nucleic Acids Res, vol.32, pp.95-100, 2004.
DOI : 10.1093/nar/gkh094

URL : https://academic.oup.com/nar/article-pdf/32/suppl_1/D95/7621831/gkh094.pdf

J. Cruz-toledo, M. Mckeague, X. R. Zhang, A. Giamberardino, E. Mcconnell et al., Aptamer base: A collaborative knowledge base to describe aptamers and SELEX experiments, Database, vol.8, 2012.

Y. X. Wu and Y. J. Kwon, Aptamers: The "evolution" of SELEX, vol.106, pp.21-28, 2016.

S. Gupta, M. Hirota, S. M. Waugh, I. Murakami, T. Suzuki et al., Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor, J. Biol. Chem, vol.289, pp.8706-8719, 2014.
DOI : 10.1074/jbc.m113.532580

URL : http://www.jbc.org/content/289/12/8706.full.pdf

P. Sundaram, H. Kurniawan, M. E. Byrne, and J. Wower, Therapeutic RNA aptamers in clinical trials, Eur. J. Pharm. Sci, vol.48, pp.259-271, 2013.
DOI : 10.1016/j.ejps.2012.10.014

J. H. Zhou and J. Rossi, Aptamers as targeted therapeutics: Current potential and challenges, Nat. Rev. Drug Discov, vol.16, pp.181-202, 2017.
DOI : 10.1038/nrd.2016.199

URL : http://europepmc.org/articles/pmc5700751?pdf=render

H. M. Meng, H. Liu, H. L. Kuai, R. Z. Peng, L. T. Mo et al., Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy, Chem. Soc. Rev, vol.45, pp.2583-2602, 2016.
DOI : 10.1039/c5cs00645g

T. H. Ku, T. T. Zhang, H. Luo, T. M. Yen, P. W. Chen et al., Nucleic acid aptamers: An emerging tool for biotechnology and biomedical sensing, Sensors, vol.15, pp.16281-16313, 2015.
DOI : 10.3390/s150716281

URL : https://www.mdpi.com/1424-8220/15/7/16281/pdf

L. Gold, D. Ayers, J. Bertino, C. Bock, A. Bock et al., Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS ONE, vol.5, 2010.
DOI : 10.1371/journal.pone.0015004

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015004&type=printable

D. H. Bunka and P. G. Stockley, Aptamers come of age-At last, Nat. Rev. Microbiol, vol.4, pp.588-596, 2006.

M. Famulok, J. S. Hartig, and G. Mayer, Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev, vol.107, pp.3715-3743, 2007.
DOI : 10.1002/chin.200751263

C. Forier, E. Boschetti, M. Ouhammouch, A. Cibiel, F. Duconge et al., DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources, J. Chromatogr. A, pp.39-50, 1489.

A. D. Keefe, S. Pai, and A. Ellington, Aptamers as therapeutics, Nat. Rev. Drug Discov, vol.9, pp.537-550, 2010.
DOI : 10.1038/nrd3141

W. Z. Zhou, P. J. Huang, J. S. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, vol.139, pp.2627-2640, 2014.
DOI : 10.1039/c4an00132j

URL : https://uwspace.uwaterloo.ca/bitstream/10012/11361/1/Liu_Juewen%287%29.pdf

H. Jo and C. Ban, Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools, Exp. Mol. Med, vol.48, 2016.
DOI : 10.1038/emm.2016.44

URL : https://www.nature.com/articles/emm201644.pdf

T. Uzawa, S. Tada, and W. Wang, Expansion of the aptamer library from a "natural soup" to an "unnatural soup, Chem. Commun, vol.49, pp.1786-1795, 2013.

A. Z. Wang and O. C. Farokhzad, Current progress of aptamer-based molecular imaging, J. Nucl. Med, vol.55, pp.353-356, 2014.

E. Boros, E. M. Gale, and P. Caravan, MR imaging probes: Design and applications, Dalton Trans, vol.44, pp.4804-4818, 2015.

D. V. Hingorani, A. S. Bernstein, and M. D. Pagel, A review of responsive MRI contrast agents, Contrast Media Mol. Imaging, vol.10, pp.245-265, 2015.

E. L. Que and C. J. Chang, Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine, Chem. Soc. Rev, vol.39, pp.51-60, 2010.

E. M. Gale, C. M. Jones, I. Ramsay, C. T. Farrar, and P. Caravan, A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range, J. Am. Chem. Soc, vol.138, pp.15861-15864, 2016.

M. V. Yigit, D. Mazumdar, H. K. Kim, J. H. Lee, B. Dintsov et al., Smart "turn-on" magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles, ChemBioChem, vol.8, pp.1675-1678, 2007.

R. Thomas, I. K. Park, and Y. Y. Jeong, Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer, Int. J. Mol. Sci, vol.14, pp.15910-15930, 2013.

D. E. Huizenga and J. W. Szostak, A DNA aptamer that binds adenosine and ATP, Biochemistry, vol.34, pp.656-665, 1995.

D. M. Tasset, M. F. Kubik, and W. Steiner, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol, vol.272, pp.688-698, 1997.

M. V. Yigit, D. Mazumdar, and Y. Lu, MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles, Bioconjug. Chem, vol.19, pp.412-417, 2008.

W. C. Xu and Y. Lu, A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex, Chem. Commun, vol.47, pp.4998-5000, 2011.

W. C. Xu, H. Xing, and Y. Lu, A smart T-1-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate, Analyst, vol.138, pp.6266-6269, 2013.

D. Artemov, N. Mori, R. Ravi, and Z. M. Bhujwalla, Magnetic resonance molecular imaging of the Her-2/neu receptor, Cancer Res, vol.63, pp.2723-2727, 2003.

Z. X. Zhou and Z. R. Lu, Gadolinium-based contrast agents for magnetic resonance cancer imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.5, pp.1-18, 2013.

B. J. Hicke, A. W. Stephens, T. Gould, Y. F. Chang, C. K. Lynott et al., Tumor targeting by an aptamer, J. Nucl. Med, vol.47, pp.668-678, 2006.

E. D. Bernard, M. A. Beking, K. Rajamanickam, E. C. Tsai, and M. C. Derosa, Target binding improves relaxivity in aptamer-gadolinium conjugates, J. Biol. Inorg. Chem, vol.17, pp.1159-1175, 2012.

P. Caravan, Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: Design and mechanism of action, Acc. Chem. Res, vol.42, pp.851-862, 2009.

S. E. Lupold, B. J. Hicke, Y. Lin, and D. S. Coffey, Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen, Cancer Res, vol.62, pp.4029-4033, 2002.

A. Z. Wang, V. Bagalkot, C. C. Vasilliou, F. Gu, F. Alexis et al., Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy, Chem. Med. Chem, vol.3, pp.1311-1315, 2008.

O. C. Farokhzad, J. J. Cheng, B. A. Teply, I. Sherifi, S. Jon et al., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo, Proc. Natl. Acad. Sci, vol.103, pp.6315-6320, 2006.

M. K. Yu, D. Kim, I. H. Lee, J. S. So, Y. Y. Jeong et al., Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles, Small, vol.7, pp.2241-2249, 2011.

P. J. Bates, D. A. Laber, D. M. Miller, S. D. Thomas, and J. O. Trent, Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer, Exp. Mol. Pathol, vol.86, pp.151-164, 2009.

J. J. Li, J. You, Y. Dai, M. L. Shi, C. P. Han et al., Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging, Anal. Chem, vol.86, pp.11306-11311, 2014.

K. L. Ji, W. S. Lim, S. F. Li, and K. Bhakoo, A two-step stimulus-response cell-SELEX method to generate a DNA aptamer to recognize inflamed human aortic endothelial cells as a potential in vivo molecular probe for atherosclerosis plaque detection, Anal. Bioanal. Chem, vol.405, pp.6853-6861, 2013.

S. M. Ametamey, M. Honer, and P. A. Schubiger, Molecular imaging with PET, Chem. Rev, vol.108, pp.1501-1516, 2008.

D. M. Perrin, 18 F]-Organotrifluoroborates as radioprosthetic groups for PET imaging: From design principles to preclinical applications, Acc. Chem. Res, vol.49, pp.1333-1343, 2016.

V. Bernard-gauthier, J. J. Bailey, Z. B. Liu, B. Wangler, C. Wangler et al., From unorthodox to established: The current status of F-18-trifluoroborate-and F-18-SiFA-based radiopharmaceuticals in PET nuclear imaging, Bioconjug. Chem, vol.27, pp.267-279, 2016.

C. W. Lange, H. F. Vanbrocklin, and S. E. Taylor, Photoconjugation of 3-azido-5-nitrobenzyl-[ 18 F] fluoride to an oligonucleotide aptamer, J. Label. Compd. Radiopharm, vol.45, pp.257-268, 2002.

O. Jacobson, I. D. Weiss, L. Wang, Z. Wang, X. Y. Yang et al., 18 F-Labeled single-stranded DNA aptamer for PET imaging of protein tyrosine kinase-7 expression, J. Nucl. Med, vol.56, pp.1780-1785, 2015.

L. Wang, O. Jacobson, D. Avdic, B. H. Rotstein, I. D. Weiss et al., Ortho-stabilized 18 F-Azido click agents and their application in PET imaging with single-stranded DNA aptamers, Angew. Chem. Int. Ed, vol.54, pp.12777-12781, 2015.

D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold, A tenascin-c aptamer identified by tumor cell-SELEX: Systematic evolution of ligands by exponential enrichment, Proc. Natl. Acad. Sci, vol.100, pp.15416-15421, 2003.

O. Jacobson, X. F. Yan, G. Niu, I. D. Weiss, Y. Ma et al., PET imaging of tenascin-c with a radio labeled single-stranded DNA aptamer, J. Nucl. Med, vol.56, pp.616-621, 2015.

G. Z. Zhu, H. M. Zhang, O. Jacobson, Z. T. Wang, H. J. Chen et al., Combinatorial screening of DNA aptamers for molecular imaging of her2 in cancer, Bioconjug. Chem, vol.28, pp.1068-1075, 2017.

J. Y. Park, T. S. Lee, I. H. Song, Y. L. Cho, J. R. Chae et al., Hybridization-based aptamer labeling using complementary oligonucleotide platform for PET and optical imaging, Biomaterials, vol.100, pp.143-151, 2016.

J. Schulz, D. Vimont, T. Bordenave, D. James, J. M. Escudier et al., Silicon-based chemistry: An original and efficient one-step approach to F-18-nucleosides and F-18-oligonucleotides for PET imaging, Chem. Eur. J, vol.17, pp.3096-3100, 2011.

D. James, J. M. Escudier, E. Amigues, J. Schulz, C. Vitry et al., A 'click chemistry' approach to the efficient synthesis of modified nucleosides and oligonucleotides for PET imaging, Tetrahedron Lett, vol.51, pp.1230-1232, 2010.

Y. Li, P. Schaffer, and D. M. Perrin, Dual isotope labeling: Conjugation of P-32-oligonucleotides with F-18-aryltrifluoroborate via copper(I) catalyzed cycloaddition, Bioorg. Med. Chem. Lett, vol.23, pp.6313-6316, 2013.

B. Kuhnast, A. De-bruin, F. Hinnen, B. Tavitian, and F. Dolle, Design and synthesis of a new F-18 fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-3-(2-F-18-fluoropyridin-3-yloxy)propyl acetamide, Bioconjug. Chem, vol.15, pp.617-627, 2004.

M. L. James and S. S. Gambhir, A molecular imaging primer: Modalities, imaging agents, and applications, Physiol. Rev, vol.92, pp.897-965, 2012.

S. D. Gomes, J. Miguel, L. Azema, S. Eimer, C. Ries et al., Tc-99m-MAG3-aptamer for imaging human tumors associated with high level of matrix metalloprotease-9, Bioconjug. Chem, vol.23, pp.2192-2200, 2012.

D. Kryza, F. Debordeaux, L. Azema, A. Hassan, O. Paurelle et al., Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas, PLoS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02139130

B. Macedo and Y. Cordeiro, Unraveling prion protein interactions with aptamers and other PrP-binding nucleic acids, Int. J. Mol. Sci, vol.18, 1023.

J. Qu, S. Q. Yu, Y. Zheng, Y. Zheng, H. Yang et al., Aptamer and its applications in neurodegenerative diseases, Cell. Mol. Life Sci, vol.74, pp.683-695, 2017.

O. Wolter and G. Mayer, Aptamers as valuable molecular tools in neurosciences, J. Neurosci, vol.37, pp.2517-2523, 2017.
DOI : 10.1523/jneurosci.1969-16.2017

URL : http://www.jneurosci.org/content/37/10/2517.full.pdf

M. Nedergaard, T. Takano, and A. J. Hansen, Beyond the role of glutamate as a neurotransmitter, Nat. Rev. Neurosci, vol.3, pp.748-755, 2002.

M. Perry, Q. Li, and R. T. Kennedy, Review of recent advances in analytical techniques for the determination of neurotransmitters, Anal. Chim. Acta, vol.653, pp.1-22, 2009.

T. Hokfelt, T. Bartfai, and F. Bloom, Neuropeptides: Opportunities for drug discovery, Lancet Neurol, vol.2, pp.463-472, 2003.

B. R. Li, Y. J. Hsieh, Y. X. Chen, Y. T. Chung, C. Y. Pan et al., An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living pc12 cells under hypoxic stimulation, J. Am. Chem. Soc, vol.135, pp.16034-16037, 2013.

A. Kumar, A. Singh, and . Ekavali, A review on Alzheimer's disease pathophysiology and its management: An update, Pharmacol. Rep, vol.67, pp.195-203, 2015.

E. Castren, Is mood chemistry?, Nat. Rev. Neurosci, vol.6, pp.241-246, 2005.

E. M. Mcconnell, M. R. Holahan, and M. C. Derosa, Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system, Nucleic Acid Ther, vol.24, pp.388-404, 2014.

C. Mannironi, A. Dinardo, P. Fruscoloni, and G. P. Tocchinivalentini, In vitro selection of dopamine RNA ligands, Biochemistry, vol.36, pp.9726-9734, 1997.

Y. Zheng, Y. Wang, and X. R. Yang, Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles, Sens. Actuator B Chem, vol.156, pp.95-99, 2011.

E. Farjami, R. Campos, J. S. Nielsen, K. V. Gothelf, J. Kjems et al., RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine, Anal. Chem, vol.85, pp.121-128, 2013.

R. Walsh and M. C. Derosa, Retention of function in the DNA homolog of the RNA dopamine aptamer, Biochem. Biophys. Res. Commun, vol.388, pp.732-735, 2009.

M. R. Holahan, D. Madularu, E. M. Mcconnell, R. Walsh, and M. C. Derosa, Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia, PLoS ONE, vol.6, 2011.

I. Alvarez-martos and E. E. Ferapontova, A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer, Biochem. Biophys. Res. Commun, vol.489, pp.381-385, 2017.

M. N. Kammer, I. R. Olmsted, A. K. Kussrow, M. J. Morris, G. W. Jackson et al., Characterizing aptamer small molecule interactions with backscattering interferometry, Analyst, vol.139, pp.5879-5884, 2014.
DOI : 10.1039/c4an01227e

J. G. Bruno, M. P. Carrillo, T. Phillips, and B. King, Development of DNA aptamers for cytochemical detection of acetylcholine, In Vitro Cell. Dev. Biol. Anim, vol.44, pp.63-72, 2008.

J. L. Chavez, J. A. Hagen, and N. Kelley-loughnane, Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates, vol.17, 2017.

K. Tatemoto and Y. Neuropeptide, Complete amino-acid-sequence of the brain peptide, Proc. Natl. Acad. Sci, vol.79, pp.5485-5489, 1982.

A. N. Van-den-pol, Neuropeptide transmission in brain circuits, Neuron, vol.76, pp.98-115, 2012.

S. D. Mendonsa and M. T. Bowser, In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis, J. Am. Chem. Soc, vol.127, pp.9382-9383, 2005.

D. Proske, M. Hofliger, R. M. Soll, A. G. Beck-sickinger, and M. Famulok, A Y2 receptor mimetic aptamer directed against neuropeptide Y, J. Biol. Chem, vol.277, pp.11416-11422, 2002.
DOI : 10.1074/jbc.m109752200

URL : http://www.jbc.org/content/277/13/11416.full.pdf

R. E. Fernandez, B. J. Sanghavi, V. Farmehini, J. L. Chavez, J. Hagen et al., Aptamer-functionalized graphene-gold nanocomposites for label-free detection of dielectrophoretic-enriched neuropeptide Y, Electrochem. Commun, vol.72, pp.144-147, 2016.
DOI : 10.1016/j.elecom.2016.09.017

S. Banerjee, Y. J. Hsieh, C. R. Liu, N. H. Yeh, H. H. Hung et al., Differential releases of dopamine and neuropeptide Y from histamine-stimulated pc12 cells detected by an aptamer-modified nanowire transistor, Small, vol.12, pp.5524-5529, 2016.

D. Eulberg, K. Buchner, C. Maasch, and S. Klussmann, Development of an automated in vitro selection protocol to obtain RNA-based aptamers: Identification of a biostable substance P antagonist, Nucleic Acids Res, vol.33, 2005.

A. Vater and S. Klussmann, Turning mirror-image oligonucleotides into drugs: The evolution of spiegelmer therapeutics, Drug Discov. Today, vol.20, pp.147-155, 2015.
DOI : 10.1016/j.drudis.2014.09.004

URL : https://doi.org/10.1016/j.drudis.2014.09.004

D. Faulhammer, B. Eschgfaller, S. Stark, P. Burgstaller, W. Englberger et al., Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ, RNA, vol.10, pp.516-527, 2004.

M. Takenaka, T. Amino, Y. Miyachi, C. Ogino, and A. Kondo, Screening and evaluation of aptamers against somatostatin, and sandwich-like monitoring of somatostatin based on atomic force microscopy, Sens. Actuator B Chem, vol.252, pp.813-821, 2017.

P. Kobelt, S. Helmling, A. Stengel, B. Wlotzka, V. Andresen et al., Anti-ghrelin spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats, Gut, vol.55, pp.788-792, 2006.

A. Vater, S. Sell, P. Kaczmarek, C. Maasch, K. Buchner et al., A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes, J. Biol. Chem, vol.288, pp.21136-21147, 2013.

M. Heiat, R. Ranjbar, A. M. Latifi, and M. J. Rasaee, Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide, Peptides, vol.82, pp.101-108, 2016.

A. Vater, F. Jarosch, K. Buchner, and S. Klussmann, Short bioactive spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: Tailored-SELEX, Nucleic Acids Res, vol.31, 2003.
DOI : 10.1093/nar/gng130

URL : https://academic.oup.com/nar/article-pdf/31/21/e130/9901265/gng130.pdf

A. W. Kahsai, J. W. Wisler, J. Lee, S. Ahn, T. J. Cahill et al., Conformationally selective RNA aptamers allosterically modulate the ?(2)-adrenoceptor, Nat. Chem. Biol, vol.12, pp.709-716, 2016.
DOI : 10.1038/nchembio.2126

URL : http://europepmc.org/articles/pmc4990464?pdf=render

D. A. Daniels, A. K. Sohal, S. Rees, and R. Grisshammer, Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1, Anal. Biochem, vol.305, pp.214-226, 2002.

G. A. Clawson, T. Abraham, W. H. Pan, X. M. Tang, S. S. Linton et al., A cholecystokinin B receptor-specific DNA aptamer for targeting pancreatic ductal adenocarcinoma. Nucleic Acid Ther, vol.27, pp.23-35, 2017.
DOI : 10.1089/nat.2016.0621

URL : https://www.liebertpub.com/doi/pdf/10.1089/nat.2016.0621

M. Costanzo and C. Zurzolo, The cell biology of prion-like spread of protein aggregates: Mechanisms and implication in neurodegeneration, Biochem. J, vol.452, pp.1-17, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874678

P. Verwilst, H. Kim, J. Seo, N. Sohn, S. Cha et al., Rational design of in vivo tau tangle-selective near-infrared fluorophores: Expanding the BODIPY universe, J. Am. Chem. Soc, vol.139, pp.13393-13403, 2017.

J. L. Guo and V. M. Lee, Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles, J. Biol. Chem, vol.286, pp.15317-15331, 2011.

J. H. Kim, E. Kim, W. H. Choi, J. Lee, J. H. Lee et al., Inhibitory RNA aptamers of tau oligomerization and their neuroprotective roles against proteotoxic stress, Mol. Pharm, vol.13, pp.2039-2048, 2016.
DOI : 10.1021/acs.molpharmaceut.6b00165

S. M. Krylova, M. Musheev, R. Nutiu, Y. F. Li, G. Lee et al., Tau protein binds single-stranded DNA sequence specifically-The proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures, FEBS Lett, vol.579, pp.1371-1375, 2005.

S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem, vol.88, pp.7793-7799, 2016.

I. W. Hamley, The amyloid ? peptide: A chemist's perspective. Role in Alzheimer's and fibrillization, Chem. Rev, vol.112, pp.5147-5192, 2012.

J. Lauren, D. A. Gimbel, H. B. Nygaard, J. W. Gilbert, and S. M. Strittmatter, Cellular prion protein mediates impairment of synaptic plasticity by amyloid-? oligomers, Nature, vol.457, pp.1128-1132, 2009.

C. Balducci, M. Beeg, M. Stravalaci, A. Bastone, A. Sclip et al., Synthetic amyloid-? oligomers impair long-term memory independently of cellular prion protein, Proc. Natl. Acad. Sci, vol.107, pp.2295-2300, 2010.

H. W. Kessels, L. N. Nguyen, S. Nabavi, and R. Malinow, The prion protein as a receptor for amyloid-?, Nature, vol.466, pp.3-4, 2010.

I. Benilova and B. De-strooper, Prion protein in alzheimer's pathogenesis: A hot and controversial issue, EMBO Mol. Med, vol.2, pp.289-290, 2010.

H. Y. Liang, Y. S. Shi, Z. W. Kou, Y. H. Peng, W. J. Chen et al., Inhibition of bace1 activity by a DNA aptamer in an Alzheimer's disease cell model, PLoS ONE, vol.10, 2015.

E. Eremeeva, M. Abramov, L. Margamuljana, J. Rozenski, V. Pezo et al., Chemical morphing of DNA containing four noncanonical bases, Angew. Chem. Int. Ed, vol.55, pp.7515-7519, 2016.

C. Gasse, M. Zaarour, S. Noppen, M. Abramov, P. Marliere et al., Modulation of BACE1 activity by chemically modified aptamers, 2017.

A. Rentmeister, A. Bill, T. Wahle, J. Walter, and M. Famulok, RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of ?-secretase BACE1 in vitro, RNA, vol.12, pp.1650-1660, 2006.

F. Ylera, R. Lurz, V. A. Erdmann, and J. P. Furste, Selection of RNA aptamers to the Alzheimer's disease amyloid peptide, Biochem. Biophys. Res. Commun, vol.290, pp.1583-1588, 2002.

C. T. Farrar, C. M. William, E. Hudry, T. Hashimoto, and B. T. Hyman, RNA aptamer probes as optical imaging agents for the detection of amyloid plaques, PLoS ONE, vol.9, 2014.

F. Rahimi, K. Murakami, J. L. Summers, C. B. Chen, and G. Bitan, RNA aptamers generated against oligomeric a?40 recognize common amyloid aptatopes with low specificity but high sensitivity, PLoS ONE, vol.4, 2009.

T. Takahashi, K. Tada, and H. Mihara, RNA aptamers selected against amyloid ?-peptide (A?) inhibit the aggregation of ab, Mol. Biosyst, vol.5, pp.986-991, 2009.

K. Murakami, F. Nishikawa, K. Noda, T. Yokoyama, and S. Nishikawa, Anti-bovine prion protein RNA aptamer containing tandem gga repeat interacts both with recombinant bovine prion protein and its ? isoform with high affinity, Prion, vol.2, pp.73-80, 2008.

D. Ogasawara, H. Hasegawa, K. Kaneko, K. Sode, and K. Ikebukuro, Screening of DNA aptamer against mouse prion protein by competitive selection, Prion, vol.1, pp.248-254, 2007.

D. Proske, S. Gilch, F. Wopfner, H. M. Schatzl, E. L. Winnacker et al., Prion-protein-specific aptamer reduces PrPSc formation, ChemBioChem, vol.3, pp.717-725, 2002.

P. Wang, K. L. Hatcher, J. C. Bartz, S. G. Chen, P. Skinner et al., Selection and characterization of DNA aptamers against PrPSc, Exp. Biol. Med, vol.236, pp.466-476, 2011.

M. Goedert, Alpha-synuclein and neurodegenerative diseases, Nat. Rev. Neurosci, vol.2, pp.492-501, 2001.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes et al., Alpha-synuclein in Lewy bodies, Nature, vol.388, pp.839-840, 1997.

K. Tsukakoshi, R. Harada, K. Sode, and K. Ikebukuro, Screening of DNA aptamer which binds to alpha-synuclein, Biotechnol. Lett, vol.32, pp.643-648, 2010.

H. Hasegawa, K. Sode, and K. Ikebukuro, Selection of DNA aptamers against VEGF(165) using a protein competitor and the aptamer blotting method, Biotechnol. Lett, vol.30, pp.829-834, 2008.

K. Tsukakoshi, K. Abe, K. Sode, and K. Ikebukuro, Selection of DNA aptamers that recognize alpha-synuclein oligomers using a competitive screening method, Anal. Chem, vol.84, pp.5542-5547, 2012.

K. Sun, N. Xia, L. J. Zhao, K. Liu, W. J. Hou et al., Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy, Sens. Actuator B Chem, vol.245, pp.87-94, 2017.

L. Liu, Y. Chang, J. Yu, M. S. Jiang, and N. Xia, Two-in-one polydopamine nanospheres for fluorescent determination of ?-amyloid oligomers and inhibition of ?-amyloid aggregation, Sens. Actuator B Chem, pp.359-365, 2017.

Y. L. Zhou, H. Q. Zhang, L. T. Liu, C. M. Li, Z. Chang et al., Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of ?-amyloid oligomers, Sci. Rep, vol.6, 2016.

L. F. Jiang, B. C. Chen, B. Chen, X. J. Li, H. L. Liao et al., Detection of ab oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles and bayf 5 :Yb,er nanoparticles as upconversion fluorescence labels, Talanta, vol.170, pp.350-357, 2017.

L. L. Zhu, J. Y. Zhang, F. Y. Wang, Y. Wang, L. L. Lu et al., Selective amyloid ? oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification, Biosens. Bioelectron, vol.78, pp.206-212, 2016.
DOI : 10.1016/j.bios.2015.11.048

C. K. Mclaughlin, G. D. Hamblin, H. F. Sleiman, and . Supramolecular, Chem. Soc. Rev, vol.40, pp.5647-5656, 2011.

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.440, pp.297-302, 2006.
DOI : 10.1038/nature04586

URL : https://authors.library.caltech.edu/22244/2/nature04586-s1.pdf

M. Endo, Y. Yang, and H. Sugiyama, DNA origami technology for biomaterials applications, Biomater. Sci, vol.1, pp.347-360, 2013.
DOI : 10.1039/c2bm00154c

R. Chhabra, J. Sharma, Y. G. Ke, Y. Liu, S. Rinker et al., Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures, J. Am. Chem. Soc, vol.129, pp.10304-10305, 2007.
DOI : 10.1021/ja072410u

S. Rinker, Y. G. Ke, Y. Liu, R. Chhabra, and H. Yan, Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding, Nat. Nanotechnol, vol.3, pp.418-422, 2008.
DOI : 10.1038/nnano.2008.164

URL : http://europepmc.org/articles/pmc2556356?pdf=render

S. M. Douglas, I. Bachelet, and G. M. Church, A logic-gated nanorobot for targeted transport of molecular payloads, Science, vol.335, pp.831-834, 2012.

M. Godonoga, T. Y. Lin, A. Oshima, K. Sumitomo, M. S. Tang et al., A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

H. K. Walter, J. Bauer, J. Steinmeyer, A. Kuzuya, C. M. Niemeyer et al., DNA origami traffic lights" with a split aptamer sensor for a bicolor fluorescence readout, Nano Lett, vol.17, pp.2467-2472, 2017.

F. R. Liu, R. J. Sha, and N. C. Seeman, Modifying the surface features of two-dimensional DNA crystals, J. Am. Chem. Soc, vol.121, pp.917-922, 1999.

L. S. Green, D. Jellinek, R. Jenison, A. Ostman, C. H. Heldin et al., Inhibitory DNA ligands to platelet-derived growth factor B-Chain, Biochemistry, vol.35, pp.14413-14424, 1996.
DOI : 10.1021/bi961544+

Y. G. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays, Science, vol.319, pp.180-183, 2008.
DOI : 10.1126/science.1150082

Y. W. Cheung, J. Kwok, A. W. Law, R. M. Watt, M. Kotaka et al., Structural basis for discriminatory recognition of plasmodium lactate dehydrogenase by a DNA aptamer, Proc. Natl. Acad. Sci, vol.110, pp.15967-15972, 2013.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy, Nat. Commun, 2011.

A. L. Chen, M. M. Yan, and S. M. Yang, Split aptamers and their applications in sandwich aptasensors, Trac-Trends Anal. Chem, vol.80, pp.581-593, 2016.

H. K. Walter, P. R. Bohlander, and H. A. Wagenknecht, Development of a wavelength-shifting fluorescent module for the adenosine aptamer using photostable cyanine dyes, Chemistry, vol.4, pp.92-96, 2015.

C. Holzhauser and H. A. Wagenknecht, DNA and RNA "traffic lights": Synthetic wavelength-shifting fluorescent probes based on nucleic acid base substitutes for molecular imaging, J. Org. Chem, vol.78, pp.7373-7379, 2013.

N. Bertrand, J. Wu, X. Y. Xu, N. Kamaly, and O. C. Farokhzad, Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv. Rev, vol.66, pp.2-25, 2014.

K. Strebhardt, A. Ullrich, and . Paul, Ehrlich's magic bullet concept: 100 years of progress, Nat. Rev. Cancer, vol.8, pp.473-480, 2008.

Q. L. Liu, C. Jin, Y. Y. Wang, X. H. Fang, X. B. Zhang et al., Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy, NPG Asia Mater, vol.6, 2014.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, vol.335, pp.442-444, 2012.

J. Kim, S. J. Park, and D. H. Min, Emerging approaches for graphene oxide biosensor, Anal. Chem, vol.89, pp.232-248, 2017.

B. P. Nellore, R. Kanchanapally, A. Pramanik, S. S. Sinha, S. R. Chavva et al., Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells, Bioconjug. Chem, vol.26, pp.235-242, 2015.

A. Bahreyni, R. Yazdian-robati, S. Hashemitabar, M. Ramezani, P. Ramezani et al., A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells, Int. J. Pharm, vol.526, pp.391-399, 2017.

Y. Tang, H. Hu, M. G. Zhang, J. Song, L. Nie et al., An aptamer-targeting photoresponsive drug delivery system using "off-on" graphene oxide wrapped mesoporous silica nanoparticles, Nanoscale, vol.7, pp.6304-6310, 2015.

L. Yang, X. B. Zhang, M. Ye, J. H. Jiang, R. H. Yang et al., Aptamer-conjugated nanomaterials and their applications, Adv. Drug Deliv. Rev, vol.63, pp.1361-1370, 2011.

W. Niu, X. Chen, W. Tan, and A. S. Veige, N-Heterocyclic Carbene-Gold(I) complexes conjugated to a Leukemia-Specific DNA aptamer for targeted drug delivery, Angew. Chem. Int. Ed, vol.55, pp.8889-8893, 2016.

P. I. Siafaka, N. U. Okur, E. Karavas, and D. N. Bikiaris, Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses, Int. J. Mol. Sci, vol.17, 1440.

A. Latorre, C. Posch, Y. Garcimartin, A. Celli, M. Sanlorenzo et al., DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics, Nanoscale, vol.6, pp.7436-7442, 2014.

M. D. Massich, D. A. Giljohann, A. L. Schmucker, P. C. Patel, and C. A. Mirkin, Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates, ACS Nano, vol.4, pp.5641-5646, 2010.

S. Huang, S. Wei, H. Chang, H. Lin, and C. Huang, Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant, J. Control. Release, vol.221, pp.9-17, 2016.

B. J. Swift, J. A. Shadish, C. A. Deforest, and F. Baneyx, Streamlined synthesis and assembly of a hybrid sensing architecture with solid binding proteins and click chemistry, J. Am. Chem. Soc, vol.139, pp.3958-3961, 2017.

D. Geissler, S. Linden, K. Liermann, K. D. Wegner, L. J. Charbonniere et al., Lanthanides and quantum dots as forster resonance energy transfer agents for diagnostics and cellular imaging, Inorg. Chem, vol.53, pp.1824-1838, 2014.

D. J. Zhou, Quantum dot-nucleic acid/aptamer bioconjugate-based fluorimetric biosensors, Biochem. Soc. Trans. 2012, vol.40, pp.635-639

J. Elgqvist, Nanoparticles as theranostic vehicles in experimental and clinical applications-focus on prostate and breast cancer, Int. J. Mol. Sci, vol.18, p.1102, 2017.

Z. Lin, Q. Ma, X. Fei, H. Zhang, and X. Su, A novel aptamer functionalized cuins2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells, Anal. Chim. Acta, vol.818, pp.54-60, 2014.

Y. R. Wu, K. Sefah, H. P. Liu, R. W. Wang, and W. H. Tan, DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells, Proc. Natl. Acad. Sci, vol.107, pp.5-10, 2010.

H. P. Liu, Z. Zhu, H. Z. Kang, Y. R. Wu, K. Sefan et al., DNA-based micelles: Synthesis, micellar properties and size-dependent cell permeability, Chem. Eur. J, vol.16, pp.3791-3797, 2010.

J. Kim, D. Kim, and J. Lee, DNA aptamer-based carrier for loading proteins and enhancing the enzymatic activity, vol.7, pp.1643-1645, 2017.

X. L. Xiong, H. P. Liu, Z. L. Zhao, M. B. Altman, D. Lopez-colon et al., DNA aptamer-mediated cell targeting, Angew. Chem. Int. Ed, vol.52, pp.1472-1476, 2013.

S. V. Lale, R. G. Aswathy, A. Aravind, D. S. Kumar, and V. Koul, AS1411 aptamer and folic acid functionalized pH-responsive atrp fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy, Biomacromolecules, vol.15, pp.1737-1752, 2014.

P. C. Sun, N. Zhang, Y. F. Tang, Y. N. Yang, X. Chu et al., Sl2b aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer, Int. J. Nanomed, vol.12, pp.2657-2672, 2017.

B. Dai, Y. Hu, J. Duan, and X. Yang, Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for muc1-expressing breast cancer cells in vitro, Oncotarget, vol.7, pp.38257-38269, 2016.

S. E. Stiriba, H. Frey, and R. Haag, Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy, Angew. Chem. Int. Ed, vol.41, pp.1329-1334, 2002.

S. R. Macewan and A. Chilkoti, From composition to cure: A systems engineering approach to anticancer drug carriers, Angew. Chem. Int. Ed, vol.56, pp.6712-6733, 2017.

F. Gu, L. Zhang, B. A. Teply, N. Mann, A. Wang et al., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers, Proc. Natl. Acad. Sci, vol.105, pp.2586-2591, 2008.

S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad, and S. J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles, Proc. Natl. Acad. Sci, vol.105, pp.17356-17361, 2008.

S. Dhar, N. Kolishetti, S. J. Lippard, and O. C. Farokhzad, Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo, Proc. Natl. Acad. Sci, vol.108, pp.1850-1855, 2011.

Y. Y. Zhuang, H. P. Deng, Y. Su, L. He, R. B. Wang et al., Aptamer-functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy, Biomacromolecules, vol.17, pp.2050-2062, 2016.

Y. H. Lao, K. K. Phua, and K. W. Leong, Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation, ACS Nano, vol.9, pp.2235-2254, 2015.

S. Taghavi, M. Ramezani, M. Alibolandi, K. Abnous, and S. M. Taghdisi, Chitosan-modified plga nanoparticles tagged with 5tr1 aptamer for in vivo tumor-targeted drug delivery, Cancer Lett, vol.400, pp.1-8, 2017.

D. J. Coles, B. E. Rolfe, N. R. Boase, R. N. Veedu, and K. J. Thurecht, Aptamer-targeted hyperbranched polymers: Towards greater specificity for tumours in vivo, Chem. Commun, vol.49, pp.3836-3838, 2013.

S. R. Yu, R. J. Dong, J. X. Chen, F. Chen, W. F. Jiang et al., Synthesis and self-assembly of arnphiphilic aptamer-functionalized hyperbranched multiarm copolymers for targeted cancer imaging, Biomacromolecules, vol.15, pp.1828-1836, 2014.

W. J. Xu, I. A. Siddiqui, M. Nihal, S. Pilla, K. Rosenthal et al., Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer, Biomaterials, vol.34, pp.5244-5253, 2013.

V. P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov, vol.4, pp.145-160, 2005.

J. Huwyler, D. Wu, and W. M. Pardridge, Brain drug delivery of small molecules using immunoliposomes, Proc. Natl. Acad. Sci, vol.93, pp.14164-14169, 1996.

A. Schnyder and J. Huwyler, Drug transport to brain with targeted liposomes, NeuroRX, vol.2, pp.99-107, 2005.

M. C. Willis, B. Collins, T. Zhang, L. S. Green, D. P. Sebesta et al., Liposome anchored vascular endothelial growth factor aptamers, Bioconjug. Chem, vol.9, pp.573-582, 1998.

M. N. Ara, T. Matsuda, M. Hyodo, Y. Sakurai, H. Hatakeyama et al., An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells, Biomaterials, vol.35, pp.7110-7120, 2014.

W. Alshaer, H. Hillaireau, J. Vergnaud, S. Ismail, and E. Fattal, Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells, Bioconjug. Chem, vol.26, pp.1307-1313, 2015.

K. Plourde, R. M. Derbali, A. Desrosiers, C. Dubath, A. Vallée-bélisle et al., Aptamer-based liposomes improve specific drug loading and release, J. Control. Release, vol.251, pp.82-91, 2017.

A. Wochner, M. Menger, D. Orgel, B. Cech, M. Rimmele et al., A DNA aptamer with high affinity and specificity for therapeutic anthracyclines, Anal. Biochem, vol.373, pp.34-42, 2008.

Y. Barenholz, Doxil ®-the first FDA-approved nano-drug: Lessons learned, J. Control. Release, vol.160, pp.117-134, 2012.

S. Kang and S. S. Hah, Improved ligand binding by antibody-Aptamer pincers, Bioconjug. Chem, vol.25, pp.1421-1427, 2014.

T. C. Chu, K. Y. Twu, A. D. Ellington, and M. Levy, Aptamer mediated siRNA delivery, Nucleic Acids Res, vol.34, 2006.

R. W. Wang, G. Z. Zhu, L. Mei, Y. Xie, H. B. Ma et al., Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery, J. Am. Chem. Soc, vol.136, pp.2731-2734, 2014.

G. Z. Zhu, G. Niu, and X. Y. Chen, Aptamer-drug conjugates, Bioconjug. Chem, vol.26, pp.2186-2197, 2015.

Y. Huang, D. Shangguan, H. Liu, J. A. Phillips, X. Zhang et al., Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells, ChemBioChem, vol.10, pp.862-868, 2009.

G. Zhu, J. Zheng, E. Song, M. Donovan, K. Zhang et al., Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics, Proc. Natl. Acad. Sci, vol.110, pp.7998-8003, 2013.

D. H. Shangguan, Z. H. Cao, Y. Li, and W. H. Tan, Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples, Clin. Chem, vol.53, pp.1153-1155, 2007.

P. Mallikaratchy, Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens, vol.22, 2017.

G. Zhu, L. Meng, M. Ye, L. Yang, K. ;. Sefah et al., Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells, Chem. Asian J, vol.7, pp.1630-1636, 2012.

P. Zhang, N. X. Zhao, Z. H. Zeng, C. C. Chang, and Y. L. Zu, Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping, Am. J. Clin. Pathol, vol.134, pp.586-593, 2010.

N. Jo, C. Mailhos, M. H. Ju, E. Cheung, J. Bradley et al., Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular enclothelial growth factor therapy in multiple models of ocular neovascularization, Am. J. Pathol, vol.168, pp.2036-2053, 2006.

K. Heo, S. Min, H. J. Sung, H. G. Kim, H. J. Kim et al., An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies, J. Control. Release, vol.229, pp.1-9, 2016.

Y. C. Liu, Z. C. Chen, A. B. He, Y. H. Zhan, J. F. Li et al., Targeting cellular mRNAs translation by CRISPR-Cas9

S. Y. Wang, J. H. Su, F. Zhang, and X. W. Zhuang, An RNA-aptamer-based two-color CRISPR labeling system, Sci. Rep, 2016.

J. P. Dassie and P. H. Giangrande, Current progress on aptamer-targeted oligonucleotide therapeutics, Ther. Deliv, vol.4, pp.1527-1546, 2013.

S. Kruspe, F. Mittelberger, K. Szameit, and U. Hahn, Aptamers as drug delivery vehicles, Chem. Med. Chem, vol.9, 1998.

S. Kruspe and P. Giangrande, Aptamer-siRNA chimeras: Discovery, progress, and future prospects, vol.5, 2017.

J. O. Mcnamara, E. R. Andrechek, Y. Wang, K. Viles, R. E. Rempel et al., Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol, vol.24, pp.1005-1015, 2006.

J. P. Dassie, X. Y. Liu, G. S. Thomas, R. M. Whitaker, K. W. Thiel et al., Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors, Nat. Biotechnol, vol.27, pp.839-849, 2009.

H. Y. Liu, X. L. Yu, H. T. Liu, D. Q. Wu, and J. X. She, Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer, Sci. Rep, vol.6, 2016.

H. Y. Liu and X. H. Gao, A universal protein tag for delivery of siRNA-aptamer chimeras, Sci. Rep, vol.3, p.3129, 2013.

H. Jeong, S. H. Lee, Y. Hwang, H. Yoo, H. Jung et al., Multivalent aptamer-RNA conjugates for simple and efficient delivery of doxorubicin/siRNA into multidrug-resistant cells, Macromol. Biosci, vol.17, 2017.

S. E. Wilner, B. Wengerter, K. Maier, M. D. Magalhaes, D. S. Del-amo et al., An RNA alternative to human transferrin: A new tool for targeting human cells, Mol. Ther. Nucleic Acids, vol.1, 2012.

H. B. Breitz, P. L. Weiden, P. L. Beaumier, D. B. Axworthy, C. Seiler et al., Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and Y-90-DOTA-biotin, J. Nucl. Med, vol.41, pp.131-140, 2000.

D. W. Binzel, Y. Shu, H. Li, M. Y. Sun, Q. S. Zhang et al., Specific delivery of miRNA for high efficient inhibition of prostate cancer by RNA nanotechnology, Mol. Ther, vol.24, pp.1267-1277, 2016.

A. Serganov, D. J. Patel, and . Ribozymes, riboswitches and beyond: Regulation of gene expression without proteins, Nat. Rev. Genet, vol.8, pp.776-790, 2007.

C. Romero-lopez, A. Barroso-deljesus, and E. Puerta-fernandez, Berzal-Herranz, A. Interfering with hepatitis C virus ires activity using RNA molecules identified by a novel in vitro selection method, Biol. Chem, vol.386, pp.183-190, 2005.

C. Romero-lopez, R. Diaz-gonzalez, and A. Barroso-deljesus, Berzal-Herranz, A. Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule, J. Gen. Virol, vol.90, pp.1659-1669, 2009.

C. Romero-lopez, T. Lahlali, and B. Berzal-herranz, Berzal-Herranz, A. Development of optimized inhibitor RNAs allowing multisite-targeting of the HCV genome, vol.22, p.861, 2017.

P. Travascio, Y. F. Li, and D. Sen, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex, Chem. Biol, vol.5, pp.505-517, 1998.

E. Golub, H. B. Albada, W. C. Liao, Y. Biniuri, and I. Willner, Nucleoapzymes: Hemin/G-quadruplex DNAzyme-aptamer binding site conjugates with superior enzyme-like catalytic functions, J. Am. Chem. Soc, vol.138, pp.164-172, 2016.

S. Ni, H. Yao, L. Wang, J. Lu, F. Jiang et al., Chemical modifications of nucleic acid aptamers for therapeutic purposes, Int. J. Mol. Sci, vol.18, 1683.

S. Diafa and M. Hollenstein, Generation of aptamers with an expanded chemical repertoire, Molecules, vol.20, pp.16643-16671, 2015.

T. Chen, N. Hongdilokkul, Z. X. Liu, D. Thirunavukarasu, and F. E. Romesberg, The expanding world of DNA and RNA, Curr. Opin. Chem. Biol, vol.34, pp.80-87, 2016.

M. A. Dellafiore, J. M. Montserrat, and A. M. Iribarren, Modified nucleoside triphosphates for in vitro selection techniques, Front. Chem, vol.4, 2016.

F. Tolle and G. Mayer, Dressed for success-Applying chemistry to modulate aptamer functionality, Chem. Sci, vol.4, pp.60-67, 2013.

M. R. Dunn, R. M. Jimenez, and J. C. Chaput, Analysis of aptamer discovery and technology, Nat. Rev. Chem, vol.1, p.76, 2017.

B. N. Gawande, J. C. Rohloff, J. D. Carter, I. Carlowitz, C. Zhang et al., Selection of DNA aptamers with two modified bases, Proc. Natl. Acad. Sci, vol.114, pp.2898-2903, 2017.

C. H. Lam, C. J. Hipolito, M. Hollenstein, and D. M. Perrin, A divalent metal-dependent self-cleaving DNAzyme with a tyrosine side chain, Org. Biomol. Chem, vol.9, pp.6949-6954, 2011.

M. Renders, E. Miller, C. H. Lam, and D. M. Perrin, Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria, Org. Biomol. Chem, vol.15, 1980.

H. So, D. Park, E. Jeon, Y. Kim, B. S. Kim et al., Detection and Titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors, Small, vol.4, pp.197-201, 2008.

H. Minagawa, K. Onodera, H. Fujita, T. Sakamoto, J. Akitomi et al., Waga, I. Selection, characterization and application of artificial DNA aptamer containing appended bases with sub-nanomolar affinity for a salivary biomarker

Y. Imaizumi, Y. Kasahara, H. Fujita, S. Kitadume, H. Ozaki et al., Efficacy of base-modification on target binding of small molecule DNA aptamers, J. Am. Chem. Soc, vol.135, pp.9412-9419, 2013.

E. J. Cho, J. Lee, and A. D. Ellington, Applications of aptamers as sensors, Annu. Rev. Anal. Chem, vol.2, pp.241-264, 2009.

N. K. Vaish, R. Larralde, A. W. Fraley, J. W. Szostak, and L. W. Mclaughlin, A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality, Biochemistry, vol.42, pp.8842-8851, 2003.

A. M. Kabza and J. T. Sczepanski, An L-RNA aptamer with expanded chemical functionality that inhibits microRNA biogenesis, vol.18, pp.1824-1827, 2017.

D. H. Kong, Y. Lei, W. Yeung, and R. Hili, Enzymatic synthesis of sequence-defined synthetic nucleic acid polymers with diverse functional groups, Angew. Chem. Int. Ed, vol.55, pp.13164-13168, 2016.

Y. Lei, D. H. Kong, and R. Hili, A high-fidelity codon set for the T4 DNA ligase-catalyzed polymerization of modified oligonucleotides, ACS Comb. Sci, vol.17, pp.716-721, 2015.

D. Kong, W. Yeung, and R. Hili, In vitro selection of diversely-functionalized aptamers, J. Am. Chem. Soc, vol.139, pp.13977-13980, 2017.

A. W. Feldman and F. E. Romesberg, In vivo structure-activity relationships and optimization of an unnatural base pair for replication in a semi-synthetic organism, J. Am. Chem. Soc, vol.139, pp.11427-11433, 2017.

M. Kimoto, R. Yamashige, K. Matsunaga, S. Yokoyama, and I. Hirao, Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nat. Biotechnol, vol.31, pp.453-457, 2013.

M. Kimoto, M. Nakamura, and I. Hirao, Post-exSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF(165) toward pharmaceutical applications, Nucleic Acids Res, vol.44, pp.7487-7494, 2016.

K. Matsunaga, M. Kimoto, and I. Hirao, High-affinity DNA aptamer generation targeting von willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases, J. Am. Chem. Soc, vol.139, pp.324-334, 2017.

I. Hirao, G. Kawai, S. Yoshizawa, Y. Nishimura, Y. Ishido et al., Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution-An extraordinarily stable structure resistant to nucleases and heat, Nucleic Acids Res, vol.22, pp.576-582, 1994.

K. Matsunaga, M. Kimoto, C. Hanson, M. Sanford, H. A. Young et al., Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications, Sci. Rep, vol.5, 2015.

I. Hirao, M. Kimoto, and K. H. Lee, DNA aptamer generation by exSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method, Biochimie, 2017.

Z. Y. Yang, F. Chen, S. G. Chamberlin, and S. A. Benner, Expanded genetic alphabets in the polymerase chain reaction, Angew. Chem. Int. Ed, vol.49, pp.177-180, 2010.

S. A. Benner, N. B. Karalkar, S. Hoshika, R. Laos, R. W. Shaw et al., Alternative Watson-Crick synthetic genetic systems, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

K. Sefah, Z. Yang, K. M. Bradley, S. Hoshika, E. Jiménez et al., In vitro selection with artificial expanded genetic information systems, Proc. Natl. Acad. Sci, vol.111, pp.1449-1454, 2014.

L. Zhang, Z. Yang, T. Trinh, I. T. Teng, S. Wang et al., Aptamers against cells overexpressing glypican 3 from expanded genetic systems combined with cell engineering and laboratory evolution, Angew. Chem. Int. Ed, vol.55, pp.12372-12375, 2016.

E. Biondi, J. D. Lane, D. Das, S. Dasgupta, J. A. Piccirilli et al., Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen, Nucleic Acids Res, vol.44, pp.9565-9577, 2016.

O. Kikin, L. Antonio, and P. S. Bagga, Qgrs mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences, Nucleic Acids Res, vol.34, pp.676-682, 2006.

D. A. Malyshev, K. Dhami, T. Lavergne, T. J. Chen, N. Dai et al., A semi-synthetic organism with an expanded genetic alphabet, Nature, vol.509, pp.385-388, 2014.

Y. Zhang, B. M. Lamb, A. W. Feldman, A. X. Zhou, T. Lavergne et al., A semisynthetic organism engineered for the stable expansion of the genetic alphabet, Proc. Natl. Acad. Sci, vol.114, pp.1317-1322, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636967

P. Rothlisberger, F. Levi-acobas, I. Sarac, P. Marliere, P. Herdewijn et al., On the enzymatic incorporation of an imidazole nucleotide into DNA, Org. Biomol. Chem, vol.15, pp.4449-4455, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02012221

C. Kaul, M. Muller, M. Wagner, S. Schneider, and T. Carell, Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair, Nat. Chem, vol.3, pp.794-800, 2011.

J. Matyasovsky, P. Perlikova, V. Malnuit, R. Pohl, and M. Hocek, 2-substituted dATP derivatives as building blocks for polymerase-catalyzed synthesis of DNA modified in the minor groove, Angew. Chem. Int. Ed, vol.55, pp.15856-15859, 2016.

M. Hollenstein, Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues-Synthesis and biochemical characterization, Org. Biomol. Chem, vol.11, pp.5162-5172, 2013.

E. Eremeeva, M. Abramov, L. Margamuljana, and P. Herdewijn, Base-modified nucleic acids as a powerful tool for synthetic biology and biotechnology, Chem. Eur. J, vol.23, pp.9560-9576, 2017.

M. Hollenstein, Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfamide groups and their polymerase incorporation into DNA, Chem. Eur. J, vol.18, pp.13320-13330, 2012.

P. Röthlisberger, F. Levi-acobas, and M. Hollenstein, New synthetic route to ethynyl-dUTP: A means to avoid formation of acetyl and chloro vinyl base-modified triphosphates that could poison SELEX experiments, Bioorg. Med. Chem. Lett, vol.27, pp.897-900, 2017.

G. Houlihan, S. Arangundy-franklin, and P. Holliger, Engineering and application of polymerases for synthetic genetics, Curr. Opin. Biotechnol, vol.48, pp.168-179, 2017.
DOI : 10.1016/j.copbio.2017.04.004

T. Chen, N. Hongdilokkul, Z. Liu, R. Adhikary, S. S. Tsuen et al., Evolution of thermophilic DNA polymerases for the recognition and amplification of C2-modified DNA, Nat. Chem, vol.8, pp.556-562, 2016.

D. Thirunavukarasu, T. Chen, Z. Liu, N. Hongdilokkul, and F. E. Romesberg, Selection of 2-fluoro-modified aptamers with optimized properties, J. Am. Chem. Soc, vol.139, pp.2892-2895, 2017.
DOI : 10.1021/jacs.6b13132

Z. Liu, T. Chen, and F. E. Romesberg, Evolved polymerases facilitate selection of fully 2-OMe-modified aptamers, Chem. Sci, 2017.

V. B. Pinheiro and P. Holliger, The XNA world: Progress towards replication and evolution of synthetic genetic polymers, Curr. Opin. Chem. Biol, vol.16, pp.245-252, 2012.

I. A. Ferreira-bravo, C. Cozens, P. Holliger, and J. J. Destefano, Selection of 2-deoxy-2-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity, Nucleic Acids Res, vol.43, pp.9587-9599, 2015.

H. Y. Yu, S. Zhang, and J. C. Chaput, Darwinian evolution of an alternative genetic system provides support for tna as an RNA progenitor, Nat. Chem, vol.4, pp.183-187, 2012.

S. Diafa, D. Evéquoz, C. J. Leumann, and M. Hollenstein, Enzymatic synthesis of 7 ,5-bicyclo-DNA oligonucleotides, Chem. Asian J, vol.12, pp.1347-1352, 2017.
DOI : 10.1002/asia.201700374

URL : https://hal.archives-ouvertes.fr/pasteur-02012262

M. Maiti, M. Maiti, C. Knies, S. Dumbre, E. Lescrinier et al., Xylonucleic acid: Synthesis, structure, and orthogonal pairing properties, Nucleic Acids Res, vol.43, pp.7189-7200, 2015.
DOI : 10.1093/nar/gkv719

URL : https://academic.oup.com/nar/article-pdf/43/15/7189/17434576/gkv719.pdf

V. Siegmund, T. Santner, R. Micura, and A. Marx, Screening mutant libraries of T7 RNA polymerase for candidates with increased acceptance of 2-modified nucleotides, Chem. Commun, vol.48, pp.9870-9872, 2012.

N. Inoue, A. Shionoya, N. Minakawa, A. Kawakami, N. Ogawa et al., Amplification of 4-thioDNA in the presence of 4-thio-dTTP and 4-thio-dCTP, and 4-thioDNA-directed transcription in vitro and in mammalian cells, J. Am. Chem. Soc, vol.129, pp.15424-15425, 2007.

T. Kojima, K. Furukawa, H. Maruyama, N. Inoue, N. Tarashima et al., PCR amplification of 4-thioDNA using 2-deoxy-4-thionucleoside 5-triphosphates, ACS Synth. Biol, vol.2, pp.529-536, 2013.
DOI : 10.1021/sb400074w

G. Houlihan, S. Arangundy-franklin, and P. Holliger, Exploring the chemistry of genetic information storage and propagation through polymerase engineering, Acc. Chem. Res, vol.50, pp.1079-1087, 2017.

F. J. Ghadessy, N. Ramsay, F. Boudsocq, D. Loakes, A. Brown et al., Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution, Nat. Biotechnol, vol.22, pp.755-759, 2004.

Y. Higashimoto, T. Matsui, Y. Nishino, J. Taira, H. Inoue et al., Blockade by phosphorothioate aptamers of advanced glycation end products-induced damage in cultured pericytes and endothelial cells, Microvasc. Res, vol.90, pp.64-70, 2013.

D. Volk and G. Lokesh, Development of phosphorothioate DNA and DNA thioaptamers, vol.5, p.41, 2017.

X. Yang, Y. Zhu, C. Wang, Z. Guan, L. Zhang et al., Alkylation of phosphorothioated thrombin binding aptamers improves the selectivity of inhibition of tumor cell proliferation upon anticoagulation, Biochim. Biophys. Acta, vol.1861, pp.1864-1869, 2017.

K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, J. E. Sadler, and A. Tulinsky, The structure of ?-thrombin inhibited by a 15-mer single-stranded DNA aptamer, J. Biol. Chem, vol.268, pp.17651-17654, 1993.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution, Proc. Natl. Acad. Sci, vol.90, pp.3745-3749, 1993.

S. M. Lato, N. D. Ozerova, K. Z. He, Z. Sergueeva, B. R. Shaw et al., Boron-containing aptamers to ATP, Nucleic Acids Res, vol.30, pp.1401-1407, 2002.

C. S. Cheng, Y. H. Chen, K. A. Lennox, M. A. Behlke, and B. L. Davidson, In vivo SELEX for identification of brain-penetrating aptamers, Mol. Ther. Nucleic Acids, issue.2, 2013.

I. Monaco, S. Camorani, D. Colecchia, E. Locatelli, P. Calandro et al., Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier, J. Med. Chem, vol.60, pp.4510-4516, 2017.

J. S. Temme, M. G. Drzyzga, I. S. Macpherson, and I. J. Krauss, Directed evolution of 2g12-targeted nonamannose glycoclusters by SELMA, Chem. Eur. J, vol.19, pp.17291-17295, 2013.

A. C. Larsen, M. R. Dunn, A. Hatch, S. P. Sau, C. Youngbull et al., A general strategy for expanding polymerase function by droplet microfluidics, Nat. Commun, 2016.

I. S. Macpherson, J. S. Temme, and I. J. Krauss, DNA display of folded RNA libraries enabling RNA-SELEX without reverse transcription, Chem. Commun, vol.53, pp.2878-2881, 2017.

J. C. Lai and C. Y. Hong, Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields, ACS Comb. Sci, vol.16, pp.321-327, 2014.

M. Renders, E. Miller, M. Hollenstein, and D. M. Perrin, A method for selecting modified DNAzymes without the use of modified DNA as a template in PCR, Chem. Commun, vol.51, pp.1360-1362, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02012270