
 1 

Quantitative genetics of Aedes aegypti vector 1 

competence for dengue viruses: towards a new 2 

paradigm? 3 

 4 

 5 

Louis Lambrechts 6 

Department of Virology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, 7 

France. 8 

 9 

Corresponding author: Lambrechts, L. (louis.lambrechts@pasteur.fr) 10 

11 



 2 

Abstract 1 

 2 

Like many other host-pathogen interactions, the vector competence of Aedes aegypti for 3 

dengue viruses appears to be determined by genotype-by-genotype interactions, whereby 4 

the outcome of infection depends on the specific combination of mosquito and virus 5 

genotypes. This may complicate efforts to dissect the genetic basis of vector competence 6 

in nature because it obscures mapping between genotype and phenotype and brings into 7 

question the notion of universal mosquito resistance or susceptibility. On the other hand, 8 

it offers novel opportunities to better define compatible vector-pathogen associations 9 

based on integration of both vector and pathogen genomics, which should eventually 10 

improve understanding of pathogen transmission dynamics and the risk of vector-borne 11 

disease emergence.12 



 3 

Natural patterns of vector-pathogen specificity 1 

 2 

Elucidating the genetic determinants underlying patterns of compatibility between insect 3 

vectors and the pathogens they transmit is a major goal of vector biology because they 4 

largely contribute to vector competence (see Glossary) and thus to the public health threat 5 

represented by a given vector-pathogen pair [1]. It is striking, for instance, that parasite 6 

species causing human malaria are exclusively transmitted by Anopheles mosquitoes [2], 7 

whereas the vast majority of vectors of arthropod-borne viruses (arboviruses) belong to 8 

the Culex and Aedes mosquito genera [3]. An. gambiae, for example, is the major African 9 

vector of the deadliest human malaria parasite, Plasmodium falciparum, but is 10 

incompetent to most arboviruses, with the notable exception of O’nyong-nyong virus [2]. 11 

Likewise, Ae. aegypti is an efficient vector of yellow fever, dengue, and chikungunya 12 

viruses but does not transmit P. falciparum [3]. Vector-pathogen specificity is not only 13 

observed at the genus level, but also at the species level. For example, An. freeborni is a 14 

competent vector of the rodent parasite P. yoelii, but does not support complete 15 

development of the primate parasite P. knowlesi. Conversely, An. dirus is a competent 16 

vector of P. knowlesi, but is naturally refractory to P. yoelii [4,5]. Genetic specificity of 17 

compatibility has also been shown at the intraspecific level between An. gambiae and P. 18 

falciparum [6,7]. Until recently, however, genetic specificity of compatibility at the 19 

intraspecific level had not been formally demonstrated between arboviruses and 20 

mosquitoes. 21 

 22 

 23 
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G x G interactions between dengue viruses and Aedes aegypti 1 

 2 

A recent study [8] provided empirical evidence for genotype-by-genotype (G x G) 3 

interactions between dengue viruses and their major vector species worldwide, Ae. 4 

aegypti. In a reciprocal cross-infection design of three field-derived Ae. aegypti pedigrees 5 

and three low-passage dengue-1 virus isolates, several vector competence indices were 6 

dependent on specific combinations of mosquito genotypes and virus isolates (Figure 1). 7 

Because critical environmental factors such as maternal effects and viral titer in blood 8 

meals were carefully controlled in the experimental design, interactions between 9 

mosquito pedigrees and virus isolates could be interpreted as evidence for G x G 10 

interactions. This study showed that individual variation in susceptibility to dengue 11 

viruses among Ae. aegypti mosquitoes derives, in part, from interactions between the 12 

mosquito’s and the viral genomes. Such genetic interactions between two distinct 13 

organisms can be viewed as intergenomic epistasis [9].  14 

 15 

The finding of G x G interactions between dengue viruses and Ae. aegypti is no surprise 16 

because many natural host-pathogen systems are governed by such specific interactions 17 

[7,10–15]. The occurrence of G x G interactions helps to explain the variation previously 18 

observed among Ae. aegypti populations in their vector competence for different dengue 19 

virus strains [16,17]. Although stochastic processes also play a role in dengue virus 20 

evolution [18], G x G interactions combined with the fine-scale genetic structure of Ae. 21 

aegypti populations [19–21] could lead to spatial structuring of viral populations through 22 

adaptation to their local vector populations [8,22]. 23 
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Relative nature of Ae. aegypti susceptibility to dengue viruses 1 

 2 

An important implication of G x G interactions between Ae. aegypti and dengue viruses is 3 

that they bring into question the concept of a resistant or susceptible vector genotype in 4 

natural systems. Indeed, no single Ae. aegypti pedigree was most resistant or susceptible 5 

to all three virus isolates, and reciprocally no single virus isolate was most successful in 6 

all mosquito pedigrees (Figure 1). Thus, a resistance allele or genotype against one virus 7 

strain may well confer susceptibility against another virus strain. This situation differs 8 

from plant-pathogen systems that are governed by typical gene-for-gene interactions. In 9 

these systems, one resistance allele in the plant host confers resistance to all pathogens 10 

expressing the corresponding ‘avirulence’ factor, whereas a pathogen ‘virulence’ allele 11 

confers universal infectivity [23–25]. Under the gene-for-gene model, a cost of infectivity 12 

to the pathogen is generally required to maintain genetic polymorphism [26–28]. G x G 13 

interactions detected thus far between Ae. aegypti and dengue viruses are more consistent 14 

with a matching-allele model of infection genetics, whereby successful infection requires 15 

an exact genetic match between multiple host and pathogen loci [29,30]. Under the 16 

matching-allele model, inspired from self/non-self recognition mechanisms in animals 17 

[31], universal infectivity is not possible and genetic polymorphism can be maintained by 18 

negative frequency-dependent selection [32,33]. In this context, the resistant or 19 

susceptible status of an allele or genotype is frequency-dependent and can only be 20 

inferred at the population level [34]. Strict coevolution, however, is unlikely to occur in 21 

the case of interactions between dengue viruses and Ae. aegypti because of  the low 22 



 6 

encounter rate and small fitness cost of infection that probably limit virus-driven 1 

selection of mosquitoes. 2 

 3 

That the resistant or susceptible status of a mosquito depends on pathogen genetic 4 

identity will complicate efforts to unravel the genetic basis of Ae. aegypti vector 5 

competence for dengue viruses. Several quantitative trait loci (QTL) underlying variation 6 

in Ae. aegypti vector competence for dengue-2 virus have been identified [35–37]. The 7 

specific genes and polymorphisms involved are yet to be elucidated. The existence of 8 

significant G x G interactions, however, implies that conclusions from a particular 9 

combination of mapping mosquito population and virus strain will not necessarily apply 10 

in another pair. As was concluded by a meta-analysis of a large set of published QTL 11 

studies [38], it is likely that the genetic architecture of Ae. aegypti susceptibility to 12 

dengue viruses will differ among different combinations of vector and virus genotypes. In 13 

other words, sets of QTL and epistatic interactions that explain variation in vector 14 

competence will likely change among different combinations of mapping mosquito 15 

populations and/or virus strains. 16 

 17 

 18 

Investigating the genetic basis of vector-virus specificity 19 

 20 

The pessimistic view that G x G interactions will represent a significant hurdle to 21 

elucidate the genetic basis of Ae. aegypti vector competence for dengue viruses is 22 

counter-balanced by the new perspectives that they offer. G x G interactions mean that 23 



 7 

phenotypic variation in vector competence is influenced not only by the independent, 1 

additive effects of the vector and virus genotypes, but also by a genetic component that is 2 

specific to the particular vector-virus combination [9]. It is precisely the dissection of this 3 

specific component that represents a promising research avenue because it likely includes 4 

the genetic determinants of vector-virus specific compatibility, which is a major 5 

unresolved question in vector biology. Understanding the genetic basis of vector-6 

pathogen specificity has important implications for the prevention of vector-borne 7 

disease, as illustrated by recent cases of vector-borne disease emergence associated with a 8 

change in vector-virus specificity. Examples include Venezuelan equine encephalitis 9 

[39], West Nile fever [40], and chikungunya [41,42]. Although one should not forget 10 

non-genetic contributions to variation in vector competence [43], including 11 

environmental influence on G x G interactions [44], genetic polymorphisms underlying 12 

vector-virus specificity may ultimately be used as markers to assess the risk of vector-13 

borne disease emergence and to better understand virus transmission dynamics through 14 

time and space. 15 

 16 

Merging vector and pathogen genetics requires a new approach that transcends the 17 

traditional disciplines of medical entomology, virology, parasitology, population and 18 

quantitative genetics [45]. This methodological shift shares a common goal with what is 19 

now called systems biology; i.e., to model and discover emergent properties of complex 20 

systems that cannot be predicted from examination of individual system components, but 21 

are essential for understanding the system as a whole [46]. The advent of the post-22 

genomic era in vector biology has provided a wealth of genetic tools and resources [47], 23 



 8 

which, together with theoretical developments in quantitative genetics [48], constitute a 1 

solid starting point for dissecting the genetic basis of complex traits associated with 2 

vector-pathogen interactions. Following the example of renewed appreciation for intra-3 

genome epistasis to understand the structure and function of genetic pathways [49], there 4 

are unprecedented opportunities to study gene interactions between two organisms in a 5 

quantitative and comprehensive manner. Challenges ahead include the need to develop 6 

experimental and analytical tools that allow the functional effect of genetic 7 

polymorphisms in two (sometimes very different) genomes to be examined 8 

simultaneously. For instance, Ae. aegypti has a diploid DNA genome of an estimated 1.3 9 

Gb [50], whereas dengue viruses have a haploid, positive-strand RNA genome of less 10 

than 11 kb. Another daunting challenge is to elaborate ways to overcome the 11 

overwhelming number of possible genotype combinations. Genetic analysis of pairwise 12 

(or even third- or higher-order) gene interactions will need to be based on strong 13 

hypotheses generated from functional information. Systems modeling will help to narrow 14 

down the list of possible interactions to test empirically those that are predicted to be the 15 

most influential. Ultimately, the perspective will expand to include other interacting 16 

genomes, such as those of the microbiota and endosymbionts whose influence on vector 17 

competence is becoming increasingly apparent [51–54]. 18 

 19 

 20 

 21 

 22 

 23 
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Conclusions 1 

 2 

Evidence for G x G interactions between dengue viruses and Ae. aegypti calls for a more 3 

integrated view of the genetics underlying this vector-pathogen association. As for other 4 

phenotypes that derive from host-pathogen interactions, variation in vector competence 5 

appears to result, in part, from the interplay between two genomes. Thus, focusing on one 6 

genome without considering the other will inevitably lead to an incomplete picture of the 7 

system. The challenge of future research will be to tackle the shared, comprehensive 8 

nature of the genetic basis of vector competence. Development of high-throughput 9 

functional genomics and systems approaches to biology offer unprecedented 10 

opportunities to accomplish these tasks. This new paradigm in vector biology should 11 

eventually improve our ability to define the risk of vector-borne disease emergence and 12 

understand pathogen transmission dynamics.  13 

14 
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Glossary 1 

 2 

Epistasis: Complex genetic interactions arising when the effects of alleles at one locus 3 

depend on the presence of a specific allele at another locus. 4 

 5 

Genetic architecture: Number, effect, location, and interactions of genes underlying 6 

phenotypic variation. 7 

 8 

Genotype-by-genotype (G x G) interaction: In a host-pathogen system, describes the 9 

intrinsic specificity of compatibility among host and pathogen genotypes. It can be 10 

measured as the statistical deviation from the additive combination of host and pathogen 11 

genotypes in their effects on the infection phenotype. 12 

 13 

Quantitative trait locus (QTL): Genomic region that explains part of the phenotypic 14 

variation in a continuous trait. 15 

 16 

Vector competence: Intrinsic ability of an arthropod to become infected, allow 17 

replication, and ultimately transmit a pathogen. It is genetically determined but also 18 

influenced by environmental factors.  19 

 20 

21 
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Figure Legend 1 

 2 

Figure 1. Genotype-by-genotype interactions between dengue viruses and Aedes aegypti. 3 

The matrices show experimental measurements of three different vector competence 4 

indices for all pairwise combinations of three dengue virus isolates and three mosquito 5 

pedigrees. Phenotypic values are converted to shades of grey according to the scale bar 6 

indicated below. Each vector competence index depends significantly on the specific 7 

combination of vector genotype and virus isolate. Modified, with permission, from Ref. 8 

[8]. 9 

 10 


