, WHO/UNICEF World Malaria Report, 2009.

, Genome analysis of vectorial capacity in major Anopheles vectors of malaria parasites, Anopheles Genomes Cluster Committee, 2008.

H. E. Hudson, Sequencing breakthroughs for genomic ecology and evolutionary biology, Molecular Ecology Resources, vol.8, pp.3-17, 2008.

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet, vol.10, pp.57-63, 2009.

D. R. Zerbino and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

I. Maccallum, D. Przybylski, S. Gnerre, J. Burton, and I. Shlyakhter, ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads, Genome Biology, vol.10, p.103, 2009.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, and S. J. Jones, ABySS: a parallel assembler for short read sequence data, Genome Res, vol.19, pp.1117-1140, 2009.

A. L. Toth, K. Varala, T. C. Newman, F. E. Miguez, and S. K. Hutchison, Wasp gene expression supports an evolutionary link between maternal behavior and eusociality, Science, vol.318, p.444, 2007.

J. C. Vera, C. W. Wheat, H. W. Fescemyer, M. J. Frilander, and D. L. Crawford, Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing, Molecular Ecology, vol.17, pp.1636-1647, 2008.

S. Renaut, A. W. Nolte, and L. Bernatchez, Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (Coregonus spp. Salmonidae), Molecular Ecology, vol.19, pp.115-131, 2010.

L. J. Collins, P. J. Biggs, C. Voelckel, and S. Joly, An approach to transcriptome analysis of non-model organisms using short-read sequences, Genome Informatics, vol.21, pp.3-14, 2008.

F. Birzele, J. Schaub, R. Werner, C. Clemens, and P. Baum, Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing, Nucleic Acids Res, 2010.

X. Wang, J. Luan, J. Li, Y. Bao, and C. Zhang, De novo characterization of a whitefly transcriptome and analysis of its gene expression during development, BMC Genomics, vol.11, p.400, 2010.

A. Enayati and J. Hemingway, Malaria management: past, present, and future, Annu Rev Entomol, vol.55, pp.569-591, 2010.

A. Cohuet, C. Harris, V. Robert, and D. Fontenille, Evolutionary forces on Anopheles: what makes a malaria vector, Trends Parasitol, vol.26, pp.130-136, 2010.

H. Yassine and M. A. Osta, Anopheles gambiae innate immunity, Cellular Microbiology, vol.12, pp.1-9, 2010.

R. A. Holt, G. M. Subramanian, A. Halpern, G. G. Sutton, and R. Charlab, The genome sequence of the malaria mosquito Anopheles gambiae, Science, vol.298, pp.129-149, 2002.

J. Krzywinski, O. G. Grushko, and N. J. Besansky, Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution, Mol Phylogenet Evol, vol.39, pp.417-423, 2006.

I. V. Sharakhov, A. C. Serazin, O. G. Grushko, A. Dana, and N. Lobo, Inversions and gene order shuffling in Anopheles gambiae and A. funestus, Science, vol.298, pp.182-185, 2002.

M. T. Gillies and B. De-meillon, , 1968.

M. Coetzee and D. Fontenille, Advances in the study of Anopheles funestus, a major vector of malaria in Africa, Insect Biochem Mol Biol, vol.34, pp.599-605, 2004.

E. Calvo, A. Dao, V. M. Pham, and J. M. Ribeiro, An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families, Insect Biochem Mol Biol, vol.37, pp.164-175, 2007.

A. C. Serazin, A. N. Dana, M. E. Hillenmeyer, N. F. Lobo, and M. B. Coulibaly, Comparative analysis of the global transcriptome of Anopheles funestus from Mali, PLoS One, vol.4, p.7976, 2009.

R. H. Hunt, B. D. Brooke, C. Pillay, L. L. Koekemoer, and M. Coetzee, Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus, Med and Vet Entom, vol.19, pp.271-275, 2005.

C. Costantini, N. F. Sagnon, E. Ilboudo-sanogo, M. Coluzzi, and D. Boccolini, Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso, Parassitologia, vol.41, pp.595-611, 1999.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, and Z. Zhang, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, pp.4673-4680, 1994.

, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2009.

M. W. Gaunt and M. A. Miles, An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks, Mol. Biol. Evol, vol.19, pp.748-761, 2002.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, and H. Butler, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, vol.25, pp.25-29, 2000.

A. Conesa, S. Gotz, J. M. Garcia-gomez, J. Terol, and M. Talon, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics, vol.16, pp.276-277, 2000.

J. Schultz, R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork, SMART: a webbased tool for the study of genetically mobile domains, Nucleic Acids Res, vol.28, pp.231-234, 2000.

R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, and B. Kiryutin, The COG database: an updated version includes eukaryotes, BMC Bioinformatics, vol.4, p.41, 2003.

A. Bateman, E. Birney, R. Durbin, S. R. Eddy, and K. L. Howe, The Pfam protein families database, Nucleic Acids Res, vol.28, pp.263-266, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01294685

A. Marchler-bauer, A. R. Panchenko, B. A. Shoemaker, P. A. Thiessen, and L. Y. Geer, CDD: a database of conserved domain alignments with links to domain three-dimensional structure, Nucleic Acids Res, vol.30, pp.281-283, 2002.

H. Li and R. Durbin, Fast and accurate short read alignment with BurrowsWheeler transform, Bioinformatics, vol.25, pp.1754-60, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, and J. Ruan, The Sequence alignment/map (SAM) format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

R. Jiang, S. Tavare, and P. Marjoram, Population genetic inference from resequencing data, Genetics, vol.181, pp.187-197, 2009.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, vol.5, pp.621-628, 2008.

D. Charif and J. R. Lobry, Seqin{R} 1.0-2: a contributed package to the R project for statistical computing devoted to biological sciences retrieval and analysis, Structural approaches to sequence evolution: Molecules, networks, populations, pp.207-232, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434576

Y. Surget-groba and J. Montoya-burgos, Optimization of de novo transcriptome assembly from next-generation sequencing data, Genome Research, vol.20, pp.1432-1440, 2010.

C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, and G. Kwan, Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology, vol.28, pp.511-515, 2010.

J. David, E. Coissac, C. Melodelima, R. Poupardin, and M. A. Riaz, Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology, BMC Genomics, vol.11, p.216, 2010.

R. M. Waterhouse, E. V. Kriventseva, S. Meister, Z. Xi, and S. Kanwal, Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes, Science, vol.316, pp.1738-1743, 2007.

M. M. Riehle, J. Xu, B. P. Lazzaro, S. M. Rottschaefer, and B. Coulibaly, Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1mediated protection from the malaria parasite, Plasmodium berghei, PLoS One, vol.3, p.3672, 2008.

M. Fraiture, R. Baxter, S. Steinert, Y. Chelliah, and C. Frolet, Two mosquito LRR proteins function as complement control factors in the TEP1mediated killing in Plasmodium, Cell Host & Microbe, vol.5, pp.273-284, 2009.

T. B. Sackton, B. P. Lazzaro, T. A. Schlenke, J. D. Evans, and D. Hultmark, Dynamic evolution of the innate immune system in Drosophila, Nature Genetics, vol.39, pp.1461-1468, 2007.

C. S. Wondji, J. Hemingway, and H. Ranson, Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector, BMC Genomics, vol.8, p.5, 2007.

D. J. Obbard, J. J. Welch, and T. J. Little, Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors, Malaria Journal, vol.8, p.117, 2009.

A. Cohuet, S. Krishnakumar, F. Simard, I. Morlais, and A. Koutsos, SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system, BMC genomics, vol.9, p.227, 2008.

, Evolution of genes and genomes on the Drosophila phylogeny, Drosophila 12 Genomes Consortium, vol.450, pp.203-218, 2007.

D. Grimaldi and M. S. Engel, Evolution of the insects, vol.755, 2005.