B. T. Beerntsen, A. A. James, and B. M. Christensen, Genetics of mosquito vector competence, Microbiol Mol Biol Rev, vol.64, pp.115-137, 2000.

O. Niare, K. Markianos, J. Volz, F. Oduol, A. Toure et al., Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population, Science, vol.298, pp.213-216, 2002.

?. ?. Riehle, M. M. Markianos, K. Niare, O. Xu, J. Li et al., The only genetic survey to date of wild A. gambiae for QTLs controlling P. falciparum infection, Science, vol.312, pp.577-579, 2006.

D. M. Menge, D. Zhong, T. Guda, L. Gouagna, J. Githure et al., Quantitative trait loci controlling refractoriness to Plasmodium falciparum in natural Anopheles gambiae mosquitoes from a malaria-endemic region in western Kenya, Genetics, vol.173, pp.235-241, 2006.

M. M. Riehle, K. Markianos, L. Lambrechts, A. Xia, I. Sharakhov et al., A major genetic locus controlling natural Plasmodium falciparum infection is shared by East and West African Anopheles gambiae, Malar J, vol.6, p.87, 2007.

A. A. Horton, Y. Lee, C. A. Coulibaly, V. K. Rashbrook, A. J. Cornel et al., Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection, Malaria journal, vol.9, p.160, 2010.

C. Harris, L. Lambrechts, F. Rousset, L. Abate, S. E. Nsango et al., Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum, PLoS pathogens, vol.6, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02011022

M. M. Riehle, J. Xu, B. P. Lazzaro, S. M. Rottschaefer, B. Coulibaly et al., Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1mediated protection from the malaria parasite, Plasmodium berghei, PLoS One, vol.3, 2008.

?. Rottschaefer, S. M. Riehle, M. M. Coulibaly, B. Sacko, M. Niare et al., Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae, The APL1 locus is highly polymorphic and has undergone a coordinate selective sweep with the TEP1 locus, vol.9, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02008334

D. J. Obbard, D. M. Callister, F. M. Jiggins, D. C. Soares, G. Yan et al., The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae, BMC evolutionary biology, vol.8, p.274, 2008.

M. Jallow, Y. Y. Teo, K. S. Small, K. A. Rockett, P. Deloukas et al., Genome-wide and fine-resolution association analysis of malaria in West Africa, Nat Genet, vol.41, pp.657-665, 2009.

D. P. Kwiatkowski, How malaria has affected the human genome and what human genetics can teach us about malaria, Am J Hum Genet, vol.77, pp.171-192, 2005.

G. K. Christophides, E. Zdobnov, C. Barillas-mury, E. Birney, S. Blandin et al., Immunity-related genes and gene families in Anopheles gambiae, Science, vol.298, pp.159-165, 2002.

C. Barillas-mury, A. Charlesworth, I. Gross, A. Richman, J. A. Hoffmann et al., Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae, The EMBO journal, vol.15, pp.4691-4701, 1996.

S. Meister, S. M. Kanzok, X. L. Zheng, C. Luna, T. R. Li et al., Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae, Proc Natl Acad Sci, vol.102, pp.11420-11425, 2005.

?. ?. Mitri, C. Jacques, J. C. Thiery, I. Riehle, M. M. Xu et al., Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species, PLoS Pathog, vol.5, 2009.

C. Frolet, M. Thoma, S. Blandin, J. A. Hoffmann, and E. A. Levashina, Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei, Immunity, vol.25, pp.677-685, 2006.

?. ?. Fraiture, M. Baxter, R. H. Steinert, S. Chelliah, Y. Frolet et al., A pair of articles (Fraiture 18, and Povelones19) showed that APL1C, LRIM1 and TEP1 form a functional complex that controls rodent malaria infection, Cell Host Microbe, vol.5, pp.273-284, 2009.

?. ?. Povelones, M. Waterhouse, R. M. Kafatos, F. C. Christophides, and G. K. , A pair of articles (Fraiture 18, and Povelones19) showed that APL1C, LRIM1 and TEP1 form a functional complex that controls rodent malaria infection, Science, vol.324, pp.258-261, 2009.

R. H. Baxter, C. I. Chang, Y. Chelliah, S. Blandin, E. A. Levashina et al., Structural basis for conserved complement factor-like function in the antimalarial protein TEP1, Proc Natl Acad Sci, 2007.

G. Jaramillo-gutierrez, J. Rodrigues, G. Ndikuyeze, M. Povelones, A. Molina-cruz et al., Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes, BMC microbiology, vol.9, p.154, 2009.

M. A. Osta, G. K. Christophides, and F. C. Kafatos, Effects of mosquito genes on Plasmodium development, Science, vol.303, pp.2030-2032, 2004.

R. Killick-kendrick, Parasitic protozoa of the blood of rodents: a revision of Plasmodium berghei, Parasitology, vol.69, pp.225-237, 1974.

B. Lemaitre and J. Hoffmann, The Host Defense of Drosophila melanogaster, Annu Rev Immunol, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167467

C. Mitri and K. D. Vernick,

?. Povelones, M. Upton, L. M. Sala, K. A. Christophides, and G. K. , Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1, :e1002023. High degree of combinatorial complexity describes the interactions between LRR and TEP proteins, vol.7, 2011.

Y. Dong and G. Dimopoulos, Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites, The Journal of biological chemistry, vol.284, pp.9835-9844, 2009.

Y. Dong, H. E. Taylor, and G. Dimopoulos, AgDscam, a hypervariable immunoglobulin domaincontaining receptor of the Anopheles gambiae innate immune system, PLoS biology, vol.4, p.229, 2006.

C. A. Janeway, Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology, vol.54, pp.1-13, 1989.

S. Ganesan, K. Aggarwal, N. Paquette, and N. Silverman, NF-kappaB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Current topics in microbiology and immunology, vol.349, pp.25-60, 2011.

R. B. Arrighi, F. Debierre-grockiego, R. T. Schwarz, and F. I. , The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae, Dev Comp Immunol, vol.33, pp.216-223, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00641971

?. ?. Oliveira, G. D. Lieberman, J. Barillas-mury, and C. , Rodent malaria ookinetes are nitrated as they traverse the epithelial cell, which marks them for subsequent TEP1-mediated killing, Science, 2012.

S. Gallucci and P. Matzinger, Danger signals: SOS to the immune system, Current opinion in immunology, vol.13, pp.114-119, 2001.

J. F. Hillyer, C. Barreau, and K. D. Vernick, Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel, International journal for parasitology, vol.37, pp.673-681, 2007.

L. C. Gouagna, R. S. Poueme, K. R. Dabire, J. B. Ouedraogo, D. Fontenille et al., Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae), Journal of vector ecology: journal of the Society for Vector Ecology, vol.35, pp.267-276, 2010.

P. Gurulingappa, G. A. Sword, G. Murdoch, and P. A. Mcgee, Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta, Biological Control, vol.55, pp.34-41, 2010.

F. E. Vega, M. S. Goettel, M. Blackwell, D. Chandler, M. A. Jackson et al., Fungal entomopathogens: new insights on their ecology, Fungal Ecology, vol.2, pp.149-159, 2009.

J. M. Darbro and M. B. Thomas, Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. The American journal of tropical medicine and hygiene, vol.80, pp.992-997, 2009.

M. B. Thomas and A. F. Read, Can fungal biopesticides control malaria?, Nat Rev Microbiol, 2007.

?. Blanford, S. Shi, W. Christian, R. Marden, J. H. Koekemoer et al., :e23591. Entomopathogenic fungi can efficiently kill mosquitoes before they transmit malaria, including mosquitoes resistant to chemical insecticides, PLoS One, vol.6, 2011.

M. Farenhorst, B. G. Knols, M. B. Thomas, A. F. Howard, W. Takken et al., Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticideresistant Anopheles gambiae mosquitoes, PLoS One, vol.5, p.12081, 2010.

E. Scholte, K. Ng'habi, J. Kihonda, W. Takken, K. Paaijmans et al., An entomopathogenic fungus for control of adult African malaria mosquitoes, Science, vol.308, pp.1641-1642, 2005.

S. Blanford, B. Chan, N. Jenkins, D. Sim, R. Turner et al., Fungal pathogen reduces potential for malaria transmission, Science, vol.308, pp.1638-1641, 2005.

J. D. Charlwood, T. Smith, P. F. Billingsley, W. Takken, E. Lyimo et al., Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans, Bulletin of Entomological Research, vol.87, pp.445-453, 1997.

M. W. Hahn and S. V. Nuzhdin, The fixation of malaria refractoriness in mosquitoes, Curr Biol, vol.14, pp.264-265, 2004.

U. Fillinger, H. Sombroek, S. Majambere, E. Van-loon, W. Takken et al., Identifying the most productive breeding sites for malaria mosquitoes in The Gambia, Malaria journal, vol.8, p.62, 2009.

M. W. Service, Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying, J Med Entomol, vol.13, pp.535-545, 1977.

Y. Wang, . Gilbreath-tm-3rd, P. Kukutla, G. Yan, and J. Xu, Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya, PLoS One, vol.6, 2011.

?. ?. Cirimotich, C. M. Dong, Y. Clayton, A. M. Sandiford, S. L. Souza-neto et al., A bacteria cultured from larval pools can render adult mosquitoes resistant to P. falciparum infection, Science, vol.332, pp.855-858, 2011.

I. Bargielowski and J. C. Koella, A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis, PLoS One, vol.4, p.4676, 2009.

G. Dimopoulos, A. Richman, A. Della-torre, F. C. Kafatos, and C. Louis, Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.13066-13071, 1996.

G. Dimopoulos, A. Richman, H. M. Muller, and F. C. Kafatos, Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites, Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.11508-11513, 1997.

X. Zhang, J. Zhang, and K. Y. Zhu, Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae), Insect molecular biology, vol.19, pp.683-693, 2010.

T. Bukhari, A. Middelman, C. J. Koenraadt, W. Takken, and B. G. Knols, Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi, Malaria journal, vol.9, p.22, 2010.

A. Diabate, R. K. Dabire, K. Heidenberger, J. Crawford, W. O. Lamp et al., Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation, BMC evolutionary biology, vol.8, issue.5, 2008.

?. White, B. J. Lawniczak, M. K. Cheng, C. Coulibaly, M. B. Wilson et al., Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium, The APL1 locus is highly polymorphic and has undergone a coordinate selective sweep with the TEP1 locus, vol.108, pp.244-249, 2011.

C. S. Wilding, D. Weetman, K. Steen, and M. J. Donnelly, High, clustered, nucleotide diversity in the genome of Anopheles gambiae revealed through pooled-template sequencing: implications for high-throughput genotyping protocols, BMC Genomics, vol.10, pp.320-330, 2009.

M. Coluzzi, A. Sabatini, V. Petrarca, D. Deco, and M. A. , Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex, Trans R Soc Trop Med Hyg, vol.73, pp.483-497, 1979.

M. M. Riehle, W. M. Guelbeogo, A. Gneme, K. Eiglmeier, I. Holm et al., A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites, Science, vol.331, pp.596-598, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971785

Y. T. Toure, V. Petrarca, S. F. Traore, A. Coulibaly, H. M. Maiga et al., The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa, Parassitologia, vol.40, pp.477-511, 1998.

M. K. Lawniczak, S. J. Emrich, A. K. Holloway, A. P. Regier, M. Olson et al., Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences, Science, vol.330, pp.512-514, 2010.

M. M. Riehle and K. D. Vernick, Unpublished observations

D. E. Norris, A. C. Shurtleff, Y. T. Toure, and G. C. Lanzaro, Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae ss (Diptera: Culicidae), Journal of medical entomology, vol.38, pp.336-340, 2001.

T. F. Mackay, S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles et al., The Drosophila melanogaster Genetic Reference Panel, Nature, vol.482, pp.173-178, 2012.

Y. Dong, R. Aguilar, Z. Xi, E. Warr, E. Mongin et al., Anopheles gambiae immune responses to human and rodent Plasmodium parasite species, PLoS pathogens, vol.2, p.52, 2006.

B. P. Lazzaro, B. K. Sceurman, and A. G. Clark, Genetic basis of natural variation in D. melanogaster antibacterial immunity, Science, vol.303, pp.1873-1876, 2004.