G. Dimopoulos, Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection, Proc. Natl. Acad. Sci. USA, vol.99, pp.8814-8819, 2002.

S. Meister, Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae, Proc Natl Acad Sci U S A, vol.102, pp.11420-11425, 2005.

S. B. Pinto, Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae, Proc Natl Acad Sci U S A, vol.106, pp.21270-21275, 2009.

A. Fontaine, Anopheles salivary gland proteomes from major malaria vectors, BMC Genomics, vol.13, p.614, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00772652

V. Choumet, The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study, Proteomics, vol.7, pp.3384-3394, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00527461

D. C. Rinker, Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae, Proc Natl Acad Sci U S A, vol.110, pp.8260-8265, 2013.

M. Bonizzoni, Comparative transcriptome analyses of deltamethrin-resistant andsusceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq, PLoS One, vol.7, p.44607, 2012.

J. Thailayil, K. Magnusson, H. C. Godfray, A. Crisanti, and F. Catteruccia, Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.108, pp.13677-13681, 2011.

S. Butail, N. C. Manoukis, M. Diallo, J. M. Ribeiro, and D. A. Paley, The dance of male Anopheles gambiae in wild mating swarms, J Med Entomol, vol.50, pp.552-559, 2013.

F. Lombardo, An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi, Insect Mol Biol, vol.14, pp.207-216, 2005.

F. Catteruccia, J. P. Benton, and A. Crisanti, An Anopheles transgenic sexing strain for vector control, Nat Biotechnol, vol.23, pp.1414-1417, 2005.

F. Catteruccia, Toward Anopheles transformation: Minos element activity in anopheline cells, and embryos, Proc Natl Acad Sci U S A, vol.97, p.6236, 2000.

L. A. Moreira, J. Wang, F. H. Collins, and M. Jacobs-lorena, Fitness of Anopheline Mosquitoes Expressing Transgenes That Inhibit Plasmodium Development, Genetics, vol.166, pp.1337-1341, 2004.

A. T. Isaacs, Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development, Proc Natl Acad Sci U S A, vol.109, pp.1922-1930, 2012.

E. G. Abraham, An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites, Proc Natl Acad Sci U S A, vol.102, pp.16327-16332, 2005.

S. Blandin, Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene, EMBO Rep, vol.3, pp.852-856, 2002.

S. Blandin, Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae, Cell, vol.116, pp.661-670, 2004.

S. A. Blandin, Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae, Science, vol.326, pp.147-150, 2009.

B. Boisson, Gene silencing in mosquito salivary glands by RNAi, FEBS Lett, vol.580, 2006.

M. A. Osta, G. K. Christophides, and F. C. Kafatos, Effects of mosquito genes on Plasmodium development, Science, vol.303, pp.2030-2032, 2004.

F. Catteruccia, Stable germline transformation of the malaria mosquito Anopheles stephensi, Nature, vol.405, pp.959-962, 2000.

G. L. Grossman, Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element, Insect Mol Biol, vol.10, pp.597-604, 2001.

W. Kim, Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium, J Med Entomol, vol.41, pp.447-455, 2004.

N. F. Lobo, J. R. Clayton, M. J. Fraser, F. C. Kafatos, and F. H. Collins, High efficiency germ-line transformation of mosquitoes, Nat Protoc, vol.1, pp.1312-1317, 2006.

M. Benedict, Microinjection Methods for Anopheles Embryos in Methods in Anopheles Research, vol.4, 2007.

F. Lombardo, G. Lycett, A. Lanfrancotti, M. Coluzzi, and B. Arca, Analysis of apyrase 5' upstream region validates improved Anopheles gambiae transformation technique, BMC Research Notes, vol.2, p.24, 2009.

S. Fuchs, T. Nolan, and A. Crisanti, Mosquito Transgenic Technologies to Reduce Plasmodium Transmission, Malaria, vol.923, pp.601-622, 2013.

D. A. O'brochta, R. T. Alford, K. L. Pilitt, C. U. Aluvihare, and R. A. Harrell, piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes, Proceedings of the National Academy of Sciences, vol.108, pp.16339-16344, 2011.

D. A. O'brochta, K. L. Pilitt, R. A. Harrell, A. , C. Alford et al., Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi, Bethesda), vol.3, pp.1305-1315, 2012.

G. J. Lycett, D. Amenya, and A. Lynd, The Anopheles gambiae alpha-tubulin-1b promoter directs neuronal, testes and developing imaginal tissue specific expression and is a sensitive enhancer detector, Insect Mol. Biol, vol.21, pp.79-88, 2012.

A. W. Franz, Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and ?C31 site-directed recombination, Insect Mol. Biol, vol.20, pp.587-598, 2011.

H. M. Thorpe and M. C. Smith, In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family, Proc Natl Acad Sci U S A, vol.95, pp.5505-5510, 1998.

J. M. Meredith, Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections, PLoS ONE, vol.6, p.14587, 2011.

N. Windbichler, A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, vol.473, pp.212-215, 2011.

M. P. Fish, A. C. Groth, M. P. Calos, and R. Nusse, Creating transgenic Drosophila by microinjecting the site-specific phiC31 integrase mRNA and a transgene-containing donor plasmid, Nat. Protocols, vol.2, pp.2325-2331, 2007.

A. C. Groth, M. Fish, R. Nusse, and M. P. Calos, Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31, Genetics, vol.166, pp.1775-1782, 2004.

G. M. Labbé, D. D. Nimmo, and L. Alphey, piggybac-and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse), PLoS Negl Trop Dis, vol.4, p.788, 2010.

A. L. Smidler, O. Terenzi, J. Soichot, E. A. Levashina, and E. Marois, Targeted mutagenesis in the malaria mosquito using TALE nucleases, PLoS One, vol.8, p.74511, 2013.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, A guide to choosing fluorescent proteins, Nat Methods, vol.2, pp.905-909, 2005.

D. D. Nimmo, L. Alphey, J. M. Meredith, and P. Eggleston, High efficiency site-specific genetic engineering of the mosquito genome, Insect Mol Biol, vol.15, pp.129-136, 2006.

J. M. Meredith, A. Underhill, C. C. Mcarthur, and P. Eggleston, Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase, PLoS ONE, vol.8, p.59264, 2013.

J. Bischof, R. K. Maeda, M. Hediger, F. ß. Karch, and K. Basler, An optimized transgenesis system for Drosophila using germ-line-specific PhiC31 integrases, Proceedings of the National Academy of Sciences, vol.104, pp.3312-3317, 2007.

D. Long, In¬ ?vivo site-specific integration of transgene in silkworm via PhiC31 integrase-mediated cassette exchange, Insect Biochem. Mol. Biol, vol.43, pp.997-1008, 2013.

L. Ringrose, Transgenesis in Drosophila melanogaster, Methods Mol Biol, vol.561, pp.3-19, 2009.

C. Horn, B. G. Schmid, F. S. Pogoda, and E. A. Wimmer, Fluorescent transformation markers for insect transgenesis, Insect Biochemistry & Molecular Biology, vol.32, pp.1221-1235, 2002.

O. P. Perera, I. R. Harrell, and A. M. Handler, Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient, Insect Mol Biol, vol.11, pp.291-297, 2002.

A. Lynd and G. J. Lycett, Development of the Bi-Partite Gal4-UAS System in the African Malaria Mosquito, <italic>Anopheles gambiae</italic>, PLoS ONE, vol.7, p.31552, 2012.

B. Thyagarajan, E. C. Olivares, R. P. Hollis, D. S. Ginsburg, and M. P. Calos, Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase, Mol Cell Biol, vol.21, pp.3926-3934, 2001.