S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

D. Mir, E. Delatorre, M. Bonaldo, R. Lourenco-de-oliveira, A. C. Vicente et al., Phylodynamics of yellow fever virus in the Americas: new insights into the origin of the 2017 Brazilian outbreak, Sci Rep, vol.7, 2017.

N. Iglesias, L. Byk, A. Gamarnik, E. E. Ooi, S. Vasudevan et al., Molecular biology of dengue virus, Dengue and dengue hemorrhagic fever, pp.334-364, 2014.

. De-borba,

G. Manokaran, E. Finol, C. Wang, J. Gunaratne, J. Bahl et al., Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness, Science, vol.350, pp.217-221, 2015.
DOI : 10.1126/science.aab3369

URL : http://europepmc.org/articles/pmc4824004?pdf=render

S. M. Villordo, C. V. Filomatori, I. Sanchez-vargas, C. D. Blair, and A. V. Gamarnik, Dengue virus RNA structure specialization facilitates host adaptation, PLoS Pathog, vol.11, 2015.
DOI : 10.1371/journal.ppat.1004604

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004604&type=printable

P. L. Chavali, L. Stojic, L. W. Meredith, N. Joseph, M. S. Nahorski et al., Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication, Science, vol.357, pp.83-88, 2017.

J. Pompon, M. Manuel, G. K. Ng, B. Wong, C. Shan et al., Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission, PLoS Pathog, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013864

C. V. Filomatori, J. M. Carballeda, S. M. Villordo, S. Aguirre, H. M. Pallares et al., Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells, PLoS Pathog, vol.13, 2017.

K. C. Leitmeyer, D. W. Vaughn, D. M. Watts, R. Salas, I. Villalobos et al., Dengue virus structural differences that correlate with pathogenesis, J Virol, vol.73, pp.4738-4747, 1999.

M. G. De-castro, F. B. De-nogueira, R. Nogueira, R. Lourenço-de-oliveira, D. Santos et al., Genetic variation in the 3' untranslated region of dengue virus serotype 3 strains isolated from mosquitoes and humans in Brazil, Virol J, vol.10, 2013.

C. V. Filomatori, M. F. Lodeiro, D. E. Alvarez, M. M. Samsa, L. Pietrasanta et al., A 5' RNA element promotes dengue virus RNA synthesis on a circular genome, Genes Dev, vol.20, pp.2238-2249, 2006.
DOI : 10.1101/gad.1444206

URL : http://genesdev.cshlp.org/content/20/16/2238.full.pdf

M. A. Brinton and W. A. Miller, Positive strand RNA virus replication: it depends on the ends, Virus Res, vol.206, pp.1-2, 2015.

T. S. Gritsun and E. A. Gould, Direct repeats in the 3' untranslated regions of mosquito-borne flaviviruses: possible implications for virus transmission, J Gen Virol, vol.87, pp.3297-3305, 2006.

D. J. Gritsun, I. M. Jones, E. A. Gould, and T. S. Gritsun, Molecular archaeology of Flaviviridae untranslated regions: duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution, PLoS One, vol.9, 2014.

V. Proutski, E. A. Gould, and E. C. Holmes, Secondary structure of the 3' untranslated region of flaviviruses: similarities and differences, Nucleic Acids Res, vol.25, pp.1194-1202, 1997.

A. C. Shurtleff, D. W. Beasley, J. J. Chen, H. Ni, M. T. Suderman et al., Genetic variation in the 3' non-coding region of dengue viruses, Virology, vol.281, pp.75-87, 2001.

R. C. Olsthoorn and J. F. Bol, Sequence comparison and secondary structure analysis of the 3' noncoding region of flavivirus genomes reveals multiple pseudoknots, RNA, vol.7, pp.1370-1377, 2001.

L. Yu and L. Markoff, The topology of bulges in the long stem of the flavivirus 3' stem-loop is a major determinant of RNA replication competence, J Virol, vol.79, pp.2309-2324, 2005.

S. M. Villordo, J. M. Carballeda, C. V. Filomatori, and A. V. Gamarnik, RNA structure duplications and flavivirus host adaptation, Trends Microbiol, vol.24, pp.270-283, 2016.
DOI : 10.1016/j.tim.2016.01.002

URL : http://europepmc.org/articles/pmc4808370?pdf=render

R. Men, M. Bray, D. Clark, R. M. Chanock, and C. J. Lai, Dengue type 4 virus mutants containing deletions in the 3' noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys, J Virol, vol.70, pp.3930-3937, 1996.

L. Zeng, B. Falgout, and L. Markoff, Identification of specific nucleotide sequences within the conserved 3'-SL in the dengue type 2 virus genome required for replication, J Virol, vol.72, pp.7510-7522, 1998.

G. P. Pijlman, A. Funk, N. Kondratieva, J. Leung, S. Torres et al., A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity, Cell Host Microbe, vol.4, pp.579-591, 2008.
DOI : 10.1016/j.chom.2008.10.007

URL : https://doi.org/10.1016/j.chom.2008.10.007

A. Funk, K. Truong, T. Nagasaki, S. Torres, N. Floden et al., RNA structures required for production of subgenomic flavivirus RNA, J Virol, vol.84, pp.11407-11417, 2010.
DOI : 10.1128/jvi.01159-10

URL : https://jvi.asm.org/content/84/21/11407.full.pdf

E. G. Chapman, S. L. Moon, J. Wilusz, and J. S. Kieft, RNA structures that resist degradation by Xrn1 produce a pathogenic dengue virus RNA, vol.3, 2014.
DOI : 10.7554/elife.01892

URL : https://doi.org/10.7554/elife.01892

E. Schnettler, M. G. Sterken, J. Y. Leung, S. W. Metz, C. Geertsema et al., Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells, J Virol, vol.86, pp.1104-1116, 2012.
DOI : 10.1128/jvi.01104-12

URL : https://jvi.asm.org/content/86/24/13486.full.pdf

A. Schuessler, A. Funk, H. M. Lazear, D. A. Cooper, S. Torres et al., West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferonmediated antiviral response, J Virol, vol.86, pp.207-219, 2012.

S. L. Moon, B. J. Dodd, D. E. Brackney, C. J. Wilusz, G. D. Ebel et al., Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery, Virology, vol.485, pp.322-329, 2015.

G. P. Goertz, J. J. Fros, P. Miesen, C. B. Vogels, M. L. Van-der-bent et al., Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes, J Virol, vol.90, pp.930-946, 2016.

B. D. Clarke, J. A. Roby, A. Slonchak, and A. A. Khromykh, Functional noncoding RNAs derived from the flavivirus 3' untranslated region, Virus Res, vol.206, pp.53-61, 2015.
DOI : 10.1016/j.virusres.2015.01.026

J. S. Kieft, J. L. Rabe, and E. G. Chapman, New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: conservation, folding, and host adaptation, RNA Biol, vol.12, pp.1169-1177, 2015.

D. E. Alvarez, D. Lella-ezcurra, A. L. Fucito, S. Gamarnik, and A. V. , Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication, Virology, vol.339, pp.200-212, 2005.

M. Manzano, E. D. Reichert, S. Polo, B. Falgout, W. Kasprzak et al., Identification of cis-acting elements in the 3'untranslated region of the dengue virus type 2 RNA that modulate translation and replication, J Biol Chem, vol.286, pp.22521-22534, 2011.

T. S. Gritsun and E. A. Gould, Origin and evolution of 3'UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission, Adv Virus Res, vol.69, pp.69005-69007, 2007.

L. De-borba, S. M. Villordo, N. G. Iglesias, C. V. Filomatori, L. G. Gebhard et al., Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication, J Virol, vol.89, pp.3430-3437, 2015.

S. M. Villordo and A. V. Gamarnik, Differential RNA sequence requirement for dengue virus replication in mosquito and mammalian cells, J Virol, vol.87, pp.9365-9372, 2013.
DOI : 10.1128/jvi.00567-13

URL : https://jvi.asm.org/content/jvi/87/16/9365.full.pdf

L. Markoff, X. Pang, H. Hs, H. S. Falgout, B. Olsen et al., Derivation and characterization of a dengue type 1 host rangerestricted mutant virus that is attenuated and highly immunogenic in monkeys, J Virol, vol.76, pp.3318-3328, 2002.

C. C. Andrade, K. I. Young, W. L. Johnson, M. E. Villa, C. A. Buraczyk et al., Rise and fall of vector infectivity during sequential strain displacements by mosquito-borne dengue virus, J Evol Biol, vol.29, pp.2205-2218, 2016.
DOI : 10.1111/jeb.12939

URL : http://europepmc.org/articles/pmc5117188?pdf=render

T. T. Vu, E. C. Holmes, V. Duong, T. Q. Nguyen, T. H. Tran et al., Emergence of the Asian 1 genotype of dengue virus serotype 2 in Viet Nam: in vivo fitness advantage and lineage replacement in South-East Asia, PLoS Negl Trop Dis, vol.4, 2010.

L. Lambrechts, T. Fansiri, A. Pongsiri, B. Thaisomboonsuk, C. Klungthong et al., Dengue-1 virus Function of Duplicated Dumbbells in the DENV Genome ®, 2012.

, clade replacement in Thailand associated with enhanced mosquito transmission, J Virol, vol.86, pp.1853-1861

A. Fontaine, S. Lequime, I. Moltini-conclois, D. Jiolle, I. Leparc-goffart et al., Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics, PLoS Pathog, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01858750

S. S. Whitehead, B. Falgout, K. A. Hanley, J. E. Blaney, . Jr et al., A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3' untranslated region is highly attenuated and immunogenic in monkeys, J Virol, vol.77, pp.1653-1657, 2003.

S. S. Whitehead, A. P. Durbin, K. K. Pierce, D. Elwood, B. D. Mcelvany et al., In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination, PLoS Negl Trop Dis, vol.11, 2017.

M. Hochsmann, B. Voss, and R. Giegerich, Pure multiple RNA secondary structure alignments: a progressive profile approach, IEEE/ACM Trans Comput Biol Bioinf, vol.1, pp.53-62, 2004.
DOI : 10.1109/tcbb.2004.11

J. Bustos-arriaga, G. D. Gromowski, K. A. Tsetsarkin, C. Firestone, T. Castrojiménez et al., Decreased accumulation of subgenomic RNA in human cells infected with vaccine candidate DEN4Delta30 increases viral susceptibility to type I interferon, Vaccine, vol.36, pp.3460-3467, 2018.

J. M. Troyer, K. A. Hanley, S. S. Whitehead, D. Strickman, R. A. Karron et al., A live attenuated recombinant dengue-4 virus vaccine candidate with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccinees to mosquitoes, Am J Trop Med Hyg, vol.65, pp.414-419, 2001.

S. S. Whitehead, K. A. Hanley, J. E. Blaney, . Jr, L. E. Gilmore et al., Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice, and rhesus monkeys, Vaccine, vol.21, pp.4307-4316, 2003.

D. E. Alvarez, M. F. Lodeiro, S. J. Luduena, L. I. Pietrasanta, and A. V. Gamarnik, Long-range RNA-RNA interactions circularize the dengue virus genome, J Virol, vol.79, pp.6631-6643, 2005.
DOI : 10.1128/jvi.79.11.6631-6643.2005

URL : https://jvi.asm.org/content/79/11/6631.full.pdf

S. M. Villordo, D. E. Alvarez, and A. V. Gamarnik, A balance between circular and linear forms of the dengue virus genome is crucial for viral replication, RNA, vol.16, pp.2325-2335, 2010.

S. Lequime, A. Fontaine, A. Gouilh, M. Moltini-conclois, I. Lambrechts et al., Genetic drift, purifying selection and vector genotype shape dengue virus intra-host genetic diversity in mosquitoes, PLoS Genet, vol.12, 2016.
DOI : 10.1371/journal.pgen.1006111

URL : https://hal.archives-ouvertes.fr/hal-01360140

C. M. Fauquet, Virus taxonomy: classification and nomenclature of viruses, 2005.

J. Sztuba-solinska, T. Teramoto, J. W. Rausch, B. A. Shapiro, R. Padmanabhan et al., Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome, Nucleic Acids Res, vol.41, pp.5075-5089, 2013.

A. M. Groat-carmona, S. Orozco, P. Friebe, A. Payne, L. Kramer et al., A novel coding-region RNA element modulates infectious dengue virus particle production in both mammalian and mosquito cells and regulates viral replication in Aedes aegypti mosquitoes, Virology, vol.432, pp.511-526, 2012.

Z. Y. Liu, X. F. Li, T. Jiang, Y. Q. Deng, H. Zhao et al., Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization, J Virol, vol.87, pp.6804-6818, 2013.
DOI : 10.1128/jvi.00243-13

URL : https://jvi.asm.org/content/87/12/6804.full.pdf

C. S. Hahn, Y. S. Hahn, C. M. Rice, E. Lee, L. Dalgarno et al., Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences, J Mol Biol, vol.198, pp.33-41, 1987.

P. Friebe, P. Y. Shi, and H. E. , The 5' and 3' downstream AUG region elements are required for mosquito-borne flavivirus RNA replication, J Virol, vol.85, pp.1900-1905, 2011.

B. H. Song, S. I. Yun, Y. J. Choi, J. M. Kim, C. H. Lee et al., A complex RNA motif defined by three discontinuous 5-nucleotide-long strands is essential for flavivirus RNA replication, RNA, vol.14, pp.1791-1813, 2008.

D. E. Alvarez, C. V. Filomatori, and A. V. Gamarnik, Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs, Virology, vol.375, pp.223-235, 2008.

R. C. Gomila, G. W. Martin, and L. Gehrke, NF90 binds the dengue virus RNA 3' terminus and is a positive regulator of dengue virus replication, PLoS One, vol.6, 2011.

R. Ivanyi-nagy, J. P. Lavergne, C. Gabus, D. Ficheux, and J. L. Darlix, RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae, Nucleic Acids Res, vol.36, pp.712-725, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315169

A. M. Ward, K. Bidet, A. Yinglin, S. G. Ler, K. Hogue et al., Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3' UTR structures, RNA Biol, vol.8, pp.1173-1186, 2011.

S. Friedrich, T. Schmidt, R. Geissler, H. Lilie, S. Chabierski et al., AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome, J Virol, vol.88, pp.11586-11599, 2014.

S. Friedrich, S. Engelmann, T. Schmidt, G. Szczepankiewicz, S. Bergs et al., The host factor AUF1 p45 supports flavivirus propagation by triggering the RNA switch required for viral genome cyclization, J Virol, vol.92, pp.1647-1664, 2018.

K. Bidet, D. Dadlani, and M. A. Garcia-blanco, G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA, PLoS Pathog, vol.10, 2014.

D. E. Brackney, J. E. Beane, and G. D. Ebel, RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification, PLoS Pathog, vol.5, p.1000502, 2009.

A. P. Durbin, R. A. Karron, W. Sun, D. W. Vaughn, M. J. Reynolds et al., Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3'-untranslated region, Am J Trop Med Hyg, vol.65, pp.405-413, 2001.

C. Shan, A. E. Muruato, B. Nunes, H. Luo, X. Xie et al., A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models, Nat Med, vol.23, pp.763-767, 2017.

V. Proutski, T. S. Gritsun, E. A. Gould, and E. C. Holmes, Biological consequences of deletions within the 3'-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure, Virus Res, vol.64, pp.107-123, 1999.

R. Chen, E. Wang, K. A. Tsetsarkin, and S. C. Weaver, Chikungunya virus 3' untranslated region: adaptation to mosquitoes and a population bottleneck as major evolutionary forces, PLoS Pathog, vol.9, 2013.

G. Casari, C. Sander, and A. Valencia, A method to predict functional residues in proteins, Nat Struct Biol, vol.2, pp.171-178, 1995.

C. W. Mandl, F. X. Heinz, E. Puchhammer-stöckl, and C. Kunz, Sequencing the termini of capped viral RNA by 5'-3' ligation and PCR, Biotechniques, vol.10, p.486, 1991.

L. A. Byk, N. G. Iglesias, D. Maio, F. A. Gebhard, L. G. Rossi et al., Dengue virus genome uncoating requires ubiquitination, vol.7, pp.804-820, 2016.

M. Fricke and M. Marz, Prediction of conserved long-range RNA-RNA interactions in full viral genomes, Bioinformatics, vol.32, pp.2928-2935, 2016.

. De-borba,