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Abstract 

Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging 

pathogens responsible for widespread infections with consequences ranging from asymptomatic 

seroconversion to severe clinical diseases and congenital developmental deficits. This variability is 

due to multiple factors including host genetic determinants the role of which has been investigated 

in mouse models and human genetic studies. In this review, we provide an overview of the host 

genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses 

infections in mice and humans. 
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Introduction 

Flaviviruses constitute a large genus of arthropod-borne viruses, several of which represent emerging 

or re-emerging pathogens. Important members of this genus include West Nile (WNV), dengue (DENV), 

Zika (ZIKV), Japanese encephalitis (JEV) and yellow fever (YFV) viruses, all of which are transmitted by 

mosquitoes. In humans, flaviviruses infections can remain asymptomatic, trigger flu-like symptoms, or 

progress towards severe complications such as encephalitis, hemorrhagic fever or, in the case of ZIKV, 

Guillain-Barré syndrome and congenital brain developmental deficits. Because of the rapid progression 

of these infections, the innate immune response plays a key role in the quick control of viral 

multiplication and dissemination (Suthar et al. 2013). Flaviviruses cell entry and genome replication 

trigger multiple sensing events, activation of antiviral effectors through the type I interferon (IFN) 

pathway, cellular stress reaction and inflammation (Valadao et al. 2016). Like other viruses, they have 

evolved a variety of mechanisms to block the IFN pathway at different steps through interactions 

between their non-structural proteins (Cedillo-Barrón et al. 2018), in particular NS5 (Best 2017; 

Laurent-Rolle et al. 2010), and molecular components of this pathway (Cumberworth et al. 2017; Wu 

et al. 2017). 

Mouse models have been developed to study the pathophysiology of mosquito-borne flavivirus 

infections, to model the complications observed in humans (in particular encephalitis and 

neuroinvasive disease, but also intrauterine growth restriction and fetal demise caused by ZIKV 

infection during pregnancy) and to test novel preventive and therapeutic countermeasures (Julander 

and Siddharthan 2017). However, while most laboratory strains of mice are naturally susceptible to 

WNV (Mashimo et al. 2002) and JEV (Wang and Deubel 2011), their infection with DENV fails to elicit 

overt signs of disease (Zellweger and Shresta 2014) and they are somewhat refractory to ZIKV with the 

exception of very young mice or genetically manipulated strains with immune deficit (Julander and 

Siddharthan 2017). In humans, DENV and ZIKV inhibit type I IFN response by STING cleavage (Aguirre 

et al. 2012; Ding et al. 2018) and by NS5-induced STAT2 degradation (Best 2017; Grant et al. 2016), but 

these restriction mechanisms are inefficient in mice (Best 2017; Ding et al. 2018; Miorin et al. 2017). 

Efficient infection is obtained in mice genetically deficient in the receptors for type I (encoded by the 

Ifnar1 and Ifnar2 genes) and/or type II (Ifngr1 and Ifngr2 genes) IFNs. Alternatively, the type I IFN 

receptor can be blocked pharmacologically by anti-IFNAR antibody injection prior to infection 

(Sheehan et al. 2006; Sheehan et al. 2015). Recently, an immunocompetent mouse model for ZIKV 

infection has been produced by infecting with a mouse-adapted ZIKV strain mice in which the Stat2 

gene had been replaced with its human version (Gorman et al. 2018). 

The mechanisms underlying the variable severity of symptoms in human patients and between mouse 

inbred strains remain poorly understood, although the viral strain and inoculum are obvious 

contributing factors. Host microbiota can also influence susceptibility to flaviviruses, as shown in mice 

by oral antibiotic treatment (Thackray et al. 2018). Host genetic determinants affect the susceptibility 

of humans or animal species to infections. In this review, we will summarize the evidence 

demonstrating the role of host genes in the susceptibility or resistance to flaviviruses in mice and 

humans, with emphasis on innate immunity. We will focus on infections caused by WNV, DENV, ZIKV, 

JEV and YFV. While many host genes have been shown to interfere with virus biology in cultured cells, 

we will consider only genes for which variants have been associated with differential clinical severity. 

Many mouse studies have focused on WNV, while human studies investigated mostly susceptibility to 

highly prevalent DENV, thus limiting comparisons between the two species. 

 

Mouse models 
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In mice, the effect of specific genetic variants has been identified either through a genome-wide, 

forward genetic approach (from phenotypic variation to underlying gene variants), or by testing the 

consequences of genetic ablation of specific genes chosen from their function (reverse genetic 

approach). Table 1 presents a cross-compilation of all mouse genes which have been shown to 

influence clinical severity and/or lethality after infection with WNV, DENV, ZIKV, YFV or JEV. The 

corresponding experimental details, results and references are provided in Table 2. 

Genome-wide search for genetic association  

The forward genetic approach to identify flavivrus-resistance genes has been successfully applied so 

far only to WNV infection, taking advantage of the contrast between the high susceptibility of several 

laboratory inbred strains and the strong resistance of wild-derived inbred strains, one of the first 

examples of inherited resistance to a pathogen to be described in mice (Webster 1937; Webster and 

Clow 1936). Flavivirus resistance was found to be inherited in a monogenic, autosomal dominant 

manner (Darnell et al. 1974; Sangster et al. 1993) and was mapped to chromosome 5 (Urosevic et al. 

1995). Two groups simultaneously identified a loss-of-function mutation in the 2'-5' oligoadenylate 

synthetase 1b (Oas1b) mouse gene (Mashimo et al. 2002; Perelygin et al. 2002) and experimentally 

confirmed its causative role in knocked-in (Scherbik et al. 2007) and transgenic mice (Simon-Chazottes 

et al. 2011). As pointed out by Mashimo et al., the susceptibility to WNV of almost all laboratory strains 

most likely results from the shared inheritance of a haplotype carrying the Oas1b mutation from one 

of the very few progenitors at the origin of laboratory mice (Mashimo et al. 2002). 

Oas1b is one of the hundreds of IFN-stimulated genes (ISG) which have antiviral and immune 

modulatory activity to limit viral replication and spread. The mouse Oas gene cluster includes Oas1, 

Oas2, Oas3, and OasL genes. The Oas1 gene has eight copies (Oas1a to Oas1h), compared to one copy 

(OAS1) in humans (Mashimo et al. 2003). Most Oas genes encode 2'-5' oligoadenylate synthetases 

(OAS) which bind to double-stranded RNA (dsRNA) and polymerize ATP into 2'-5'-linked 

oligoadenylates (2-5A). 2-5A bind and activate ribonuclease L (RNase L), a latent endoribonuclease. 

Upon activation during viral infection, RNase L cleaves viral and cellular single-stranded RNAs (ssRNAs). 

RNase L contributes to host resistance to WNV since RNAse L-deficient mice showed increased 

mortality (Samuel et al. 2006). RNase L products of RNA degradation can also bind and activate RIG-I-

like receptors (RLR), resulting in enhanced innate immune signaling (Choi et al. 2015). However, Oas1b 

lacks 2-5A activity (Elbahesh et al. 2011). Moreover, RNase L has an antiviral effect against WNV 

infection in mouse embryonic fibroblasts carrying either functional or deficient Oas1b alleles, 

indicating that Oas1b controls WNV infection through another, RNase L-independent, mechanism 

(Elbahesh et al. 2011; Scherbik et al. 2006). Further insight into this mechanism may come from the 

identification of molecular partners of Oas1b (Courtney et al. 2012) and from the analysis of innate 

immune gene signatures that correlate with variations in Oas1b gene dosage, in genetically diverse 

mouse populations such as the Collaborative Cross (Green et al. 2017). This collection of recombinant 

inbred strains with large genetic diversity (Churchill et al. 2004) is an ideal platform for modelling a 

large range of phenotypes and has led to the development of several new models for human WNV 

disease where Oas1b is not the sole determinant (Graham et al. 2016; Graham et al. 2015). 

Despite differences in the genomic organization of the members of this gene family across mammals, 

the conservation of the OAS pathway and of its role in host response to WNV allowed to successfully 

identify a variant of the equine OAS1 gene associated with symptomatic forms of WNV disease in 

horses (Rios et al. 2010). 

An amino-acid substitution in the Stat1 gene, resulting in partial inactivation of the IFN pathway, was 

recently identified in a backcross involving an MHC-II knockout mouse strain, through genome-wide 
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SNP genotyping followed by sequence capture and sequencing of the candidate interval (Larena and 

Lobigs 2017). 

Similar genetic association studies have not yet been reported with other flaviviruses. In the case of 

Dengue and Zika viruses, they are more difficult to perform due to the necessity to analyze mice with 

an abrogated type I IFN response. 

Functional analysis of candidate genes 

Host genetic factors involved in mouse susceptibility to flavivirus infections have also been identified 

through reverse genetic approaches, by evaluating the phenotype resulting from a specific genetic 

modification. Most candidate genes have been tested based on their role in immune responses and 

validated through functional analysis using mice carrying loss-of-function mutations. In particular, the 

IFN signaling pathways are crucial in the innate immune response against flaviviruses (Miorin et al. 

2017), although adaptive immunity also plays a significant role, as illustrated by the enhanced 

susceptibility to DENV or ZIKV of mice lacking Rag1 or Rag2 (Shresta et al. 2004; Winkler et al. 2017), 

two genes critical for B and T cell development (Table 2). The importance of several mechanisms in the 

host susceptibility to these infections has been confirmed in vivo by reverse genetics (Figure 1). These 

host genetic determinants are reviewed hereafter according to their function in the immune responses 

to viral infection. 

Interferon responses 

Type I IFNs are secreted by infected cells, induce an antiviral state and promote immune responses 

against viral pathogens in an autocrine and paracrine manner. These signaling pathways are finely 

regulated by host factors at multiple levels starting from viral sensing and recognition to transduction 

and regulation of transcription. 

A variety of pattern recognition receptors (PRRs) are involved in the recognition of the virus, including 

Toll-like receptors (TLRs) and RLRs. Among the RLRs, Ddx58 and Ifih1 (which encode viral nucleic acid 

sensors known as RIG-I and MDA5, respectively), are essential PRR genes : mice deficient for either of 

them showed increased lethality after WNV infection, and mice lacking both genes were extremely 

susceptible (Errett et al. 2013; Lazear et al. 2013). Likewise, mice deficient for Mavs, the downstream 

adaptor molecule of these PRRs which coordinates pathways leading to the activation of NFB, IFN 

regulatory factors (IRFs) 3 and 7, showed enhanced WNV replication and dissemination, with high 

mortality (Suthar et al. 2010). LGP2, another member of the RLR family, is not essential for induction 

of innate immune response but promotes antigen-specific CD8+ T cell survival, proliferation, and anti-

viral effector functions (Suthar et al. 2012). It was recently demonstrated that LGP2 associates with 

DICER and blocks the cleavage of viral dsRNAs, therefore inhibiting antiviral RNA interference (van der 

Veen et al. 2018). TLR7, a sensor for ssRNA, is another critical host sensor of WNV. Tlr7 inactivation in 

mice led to an ineffective viral clearance and resulted in increased susceptibility to lethal WNV 

encephalitis (Town et al. 2009). MYD88 is considered the exclusive adaptor molecule for TLR7 and is 

required for signal transduction after viral RNA sensing and for an effective IFN response against WNV 

(Wang et al. 2004). Accordingly, Myd88 KO mice displayed the same highly susceptible phenotype as 

Tlr7 KO mice following WNV infection (Szretter et al. 2010; Town et al. 2009). By contrast, the analysis 

of Tlr3-deficient mice has led to contradictory results. A first study found that Tlr3 KO mice were more 

resistant to WNV infection than controls, with decreased viral load in the brain and reduced blood-

brain barrier permeability (Wang et al. 2004), while another study reported higher mortality and 

increased viral burden in the central nervous system (CNS) (Daffis et al. 2008a). Discrepancies were 

attributed to differences in passage history of the virus, and to dose or route of inoculation. Finally, 

MB21D1, also known as cGAS, is a cytosolic sensor of dsDNA and a cGMP-AMP synthase which plays a 
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key role in restriction of DNA viruses (Ma and Damania 2016). Interestingly, it is also important for 

innate immunity against RNA viruses with no DNA intermediates in their life cycle, as demonstrated by 

the increased susceptibility of Mb21d1 KO mice to WNV (Schoggins et al. 2014). cGMP activates 

TMEM173, better known as STING (also MITA or MYPS). DENV protein NS2B3 is able to cleave human, 

but not mouse STING (Aguirre et al. 2012; Ma and Damania 2016; Stabell et al. 2018; Yu et al. 2012), a 

phenomenon which contributes to the natural resistance of mice to DENV. NS2B3 protein from WNV, 

ZIKV and JEV, but not YFV, showed the same property (Ding et al. 2018). However, Tmem173-deficient 

mice did not exhibit increased susceptibility to ZIKV (Ding et al. 2018). 

Viral recognition by TLRs or RLRs activates multiple transcription factors including NF-κB and IRFs, 

directly or through TBK1. Irf3, Irf5 and Irf7 seem to have redundant functions since these three genes 

need to be inactivated to induce susceptibility to DENV or ZIKV (Carlin et al. 2017; Lazear et al. 2016). 

Although signaling through the same pathway, IRFs can influence host susceptibility through cell and 

tissue-specific processes. Mice deficient for either Irf1, Irf3, Irf5 or Irf7 showed increased mortality 

upon WNV infection with intact IFN-β production (Brien et al. 2011; Daffis et al. 2007; Daffis et al. 

2008b; Thackray et al. 2014). IRFs stimulate in turn the transcription of type I IFNs. Mice deficient for 

the Ifnb gene, or injected with an antibody directed against IFN-α or/and IFN-β before and during WNV 

infection displayed increased lethality, highlighting the critical contribution of type I IFNs in antiviral 

responses against WNV (Lazear et al. 2011; Sheehan et al. 2015). Likewise, mice deficient for the type 

II IFN Ifng gene showed enhanced mortality with higher viremia and replication in lymphoid tissue 

(Shrestha et al. 2006). 

IFN receptors are the central players of the IFN system and are activated upon binding of their subtype-

specific IFN. Noteworthy, mice deficient in Ifnar1 and in both Ifnar1 and Ifngr1 genes (often referred 

to as A129 and AG129, respectively, when bred on the 129S2/SvPas background) are currently the 

most widely used models in YFV, DENV and ZIKV studies. Ifnar1 KO mice were more susceptible than 

WT controls to WNV (Samuel and Diamond 2005), ZIKV (Dowall et al. 2017; Lazear et al. 2016; Rossi et 

al. 2016; Tripathi et al. 2017), DENV (Orozco et al. 2012; Prestwood et al. 2012; Shresta et al. 2004), 

and YFV (Meier et al. 2009) infections, with high levels of viral replication and disease manifestations 

allowing for pathogenesis and mechanistic studies in vivo. Morbidity and lethality were very high with 

WNV, ZIKV and YFV, and were dose-dependent with DENV. By contrast, Ifngr1 KO mice were resistant 

to YFV (Meier et al. 2009), moderately susceptible to DENV (Shresta et al. 2004) but highly susceptible 

to WNV (Shrestha et al. 2006). Mice lacking the receptor for type III IFN (Ifnlr1 gene) were resistant to 

YFV but exhibited enhanced WNV neuroinvasion with increased blood-brain barrier permeability 

(Lazear et al. 2015) and enhanced ZIKV transplacental transmission (Jagger et al. 2017). For all the 

above viruses, Ifnar1/Ifngr1 double KO mice displayed very high susceptibility with 100% mortality 

(Aliota et al. 2016; Meier et al. 2009; Prestwood et al. 2012; Shresta et al. 2004; Thibodeaux et al. 

2012). Likewise, Ifnar1/Ifnlr1 double KO mice were highly susceptible to YFV (Douam et al. 2017). These 

mouse models have allowed to decipher the roles of the different IFNs and IFN-receptors subtypes in 

response to flaviviruses. For example, in DENV infection, IFNAR signaling limits initial viral replication 

and controls its subsequent dissemination. By contrast, IFNGR-mediated responses appear to act at 

later stages of dengue disease by restricting viral replication in the periphery and eliminating virus from 

the CNS (Shresta et al. 2004). 

IFN-receptors signal through different tyrosine kinases which recruit signal transducers and activators 

of transcription (STAT). STAT proteins are key mediators of the IFN response. IFNAR and IFNLR signal 

through both STAT1 and STAT2 whereas only STAT1 is activated after IFNGR stimulation. STAT2 is one 

of the targets of the NS5 protein of flaviviruses, a potent and specific antagonist of IFN signaling which 

acts through virus-specific mechanisms (Grant et al. 2016). ZIKV NS5 binds to and targets human 
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(Kumar et al. 2016), but not mouse, STAT2 for proteasomal degradation, which provides the 

mechanism underlying the natural resistance of mice to ZIKV and DENV (Best 2017; Grant et al. 2016; 

Miorin et al. 2017). The difference between human and mouse STAT2 for the binding of DENV NS5 was 

mapped to the coiled-coil domain (Ashour et al. 2010). To bind STAT2, DENV and YFV require E3 

ubiquitin ligases UBR4 (Best 2017; Grant et al. 2016) and TRIM23 (Laurent-Rolle et al. 2014), 

respectively. WNV NS5 binds to prolidase, a cellular peptidase, to suppress IFNAR maturation and cell 

surface expression (Laurent-Rolle et al. 2010; Lubick et al. 2015). By analyzing multiple crosses 

between mice inactivated for either Ifnar1, Ifngr1, Stat1 or Stat2 genes, Perry et al. have demonstrated 

the importance of STAT proteins in the host immune response against DENV. They have shown that 

the combined loss of STAT1 and STAT2 resulted in severe disease and death in mice challenged with 

DENV. They also showed, using high virus doses, that Stat1 KO mice succumbed to dengue disease 

unlike Stat2 KO mice, and concluded that STAT1 plays a more prominent role than STAT2 in anti-DENV 

responses (Perry et al. 2011). Stat1 KO mice were also highly susceptible to ZIKV and YFV infections 

although morbidity and mortality rates varied according to viral strains (Kamiyama et al. 2017; Meier 

et al. 2009). After ZIKV infection, Stat2 KO mice displayed neurological symptoms and viral 

dissemination to the brain and gonads. Interestingly, clinical signs of Zika fever were delayed and 

milder in Ifnar1 KO mice compared with Stat2 KO mice, pointing to a possible protective role of INF-λ 

response (Tripathi et al. 2017). 

Once activated, STAT proteins stimulate the transcription of hundreds of ISGs. In addition to Oas1b, 

several ISGs have been shown to influence mouse susceptibility to WNV infection. Mice lacking Rsad2 

(also known as viperin), Ifi27l2a, Ifitm3 or Ifit2 were all more vulnerable to lethal WNV challenge and 

allowed higher viral replication mainly in the CNS (Cho et al. 2013; Gorman et al. 2016; Lucas et al. 

2015; Szretter et al. 2011). Rsad2 inhibits ZIKV replication by inducing proteasome-dependent 

degradation of ZIKV NS3 (Panayiotou et al. 2018) and the synthesis of a replication-chain terminator 

(Gizzi et al. 2018), and has cell-type specific activity in the CNS (Lindqvist et al. 2018). Ifitm proteins 

alter the properties of cell and viral membranes and can inhibit the replication of a wide range of 

pathogenic viruses (Perreira et al. 2013). They induce similar restriction of primary and antibody-

dependent enhancement secondary DENV infections in human leukemia cells (Chan et al. 2012). Ifitm3 

inhibits the early stages of Zika virus replication and can prevent Zika virus-induced cell death (Savidis 

et al. 2016). In a model of direct inoculation of ZIKV in the eye, Isg15 KO mice showed increased ocular 

tissue pathology, characterized by a severe chorioretinitis with enhanced retinal cell death (Singh et 

al. 2017). 

Overall, many studies have emphasized the crucial role of IFN responses, and especially the type I IFN 

pathway, which constitute an essential line of defense for the host after infection by flaviviruses. 

Cytokines and chemokines regulating the immune response 

The role of cytokines and chemokines as important regulators of immune responses has also been 

investigated in flaviviral infections using mice deficient for cytokines, chemokines or chemokine 

receptors. 

After WNV infection, Il10 KO mice had a decreased mortality rate, suggesting that IL-10, which has 

immunosuppressive properties, promotes WNV pathogenesis (Bai et al. 2009). Mice lacking IL-12b or 

IL-23a were more susceptible to WNV induced encephalitis, but not mice deficient for IL-12a, indicating 

that survival required intact IL-23 as opposed to IL-12 responses (Town et al. 2009). 

Chemokines and chemokine receptors, which modulate leukocytes trafficking, play an important role 

in the regulation of immune responses. Several of them have been implicated in host susceptibility to 

flaviviruses, sometimes with opposing effects depending on the virus and its cell tropism. Deficiency 
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in Cxcr3, the receptor for chemokines CXCL9, CXCL10 and CXCL11, resulted in increased lethality in 

mice infected by DENV or WNV, with a decrease in T lymphocytes in the brain, CD8+ T cells in particular 

(Hsieh et al. 2006; Zhang et al. 2008). Mice lacking CXCL10 also showed enhanced susceptibility to 

DENV infection with higher viral loads in the brain but unchanged number of infiltrating T cells, 

suggesting that CXCL10 protective effect in dengue might be due to its direct antiviral activity rather 

than its role in lymphocyte recruitment (Hsieh et al. 2006; Ip and Liao 2010). Cxcl10 KO mice showed 

enhanced susceptibility to WNV with increased viral burden in the brain and a decrease in CXCR3+ CD8+ 

T-cell trafficking, supporting a neuroprotective role for Cxcl10 in the brain (Klein et al. 2005). Ccr2 KO 

mice displayed increased survival time associated with decreased liver damage following DENV 

infection, whereas they showed a higher mortality rate combined with a reduction of monocyte 

accumulation in the brain after WNV infection (Guabiraba et al. 2010; Lim et al. 2011). Upon WNV 

infection, Ccr7-deficient mice exhibited enhanced mortality and CNS viral load, associated with marked 

leukocyte accumulation in the brain. These results indicate that CCR7 contributes to viral clearance 

and effectively modulates neuroinflammation in a model of WNV encephalitis (Bardina et al. 2017). 

Other stimulatory molecules of immune cells have crucial functions in promoting or restricting flaviviral 

infections. CLEC5a is a C-type lectin which regulates cell adhesion and cell-cell signaling during the 

immune response. CLEC5a has been shown to act as a susceptibility factor in DENV infection. Stat1 KO 

mice treated with an anti-CLEC5a antibody showed increased survival associated with a reduction of 

plasma leakage and TNF-α serum level (Chen et al. 2008). Mice deficient in Tnfrsf9, a T cell co-

stimulatory factor, displayed reduced mortality rate in a model of Japanese encephalitis, highlighting 

a detrimental role of this molecule in the immune response against JEV (Kim et al. 2015). 

Other Mechanisms 

Autophagy is an essential mechanism which targets cellular components for lysosomal degradation. In 

the immune system, autophagy has many functions in both innate and adaptive responses, such as 

intracellular pathogen detection, modulation of the inflammatory processes as well as regulation of 

lymphocytes homeostasis. Mice carrying a hypomorphic variant of Atg16l1, a key autophagy gene, and 

treated with an anti-IFNAR antibody showed reduced ZIKV vertical transmission and placental damage. 

This phenotype was shown to result from a placental cell-autonomous effect of autophagy activity 

indicating that autophagy promotes ZIKV pathogenesis during gestation (Cao et al. 2017). 

Semaphorins constitute a group of proteins that are involved in connecting the neuronal and immune 

systems. Following WNV infection, Sema7A KO mice exhibited increased survival, correlated with a 

reduction of blood-brain barrier permeability. SEMA7A thus appears to play a deleterious role during 

WNV infection in vivo (Sultana et al. 2012). 

Human vs mouse genetics 

While mouse genetics studies improve our understanding of the function of genes and identify new 

susceptibility genes in genome wide screens, the main obstacle in studying flaviviruses using mouse 

models is the inherent resistance of mice to most mosquito-borne flaviviruses (such as DENV and ZIKV). 

Several mouse models frequently used in flaviviral research are constitutively deficient for the IFN type 

I and/or type II responses, and therefore do not reflect an intact functioning human immune system. 

Moreover, these models are generally more susceptible to mouse adapted viral strains, which are 

genetically different from human pathogens Therefore, human cohorts are important to understand 

the role of the genes in protection or pathogenesis of human diseases, although human genetic studies 

are highly dependent on patient numbers.  

Human genetic studies 
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Multiple approaches have been taken to identify genetic variants in human populations associated 

with susceptibility or resistance to flaviviruses, in particular case-control studies to test candidate 

genes, genome-wide association studies, association with specific HLA alleles, and allelic selection in 

exposed populations or ethnicities. Many studies have focused on favorable or disadvantageous 

immunological mechanisms involved in the pathogeny of infection but few have identified underlying 

genetic variants. 

West Nile virus 

WNV is a neurotropic virus and is transmitted to humans, who are a dead end host, by Culex 

mosquitoes. WNV causes a self-limiting febrile illness in most individuals that occasionally progresses 

to severe neurological disease including meningitis and encephalitis (Colpitts et al. 2012). Currently, 

there is no vaccine licensed in humans. Although there were a few human genetic studies on WNV, 

the most significant data resulted from the confirmation of the findings of the mouse model. Two 

polymorphisms of human OAS1, a splicing variant (rs10774671) (Lim et al. 2009), and an intron 2 

variant (rs34137742) (Bigham et al. 2011), were associated with symptomatic WNV seroconversion. 

Another study found a polymorphism of human OASL (rs3213545) associated with hospitalized WNV 

fever, meningitis and/or WNV encephalitis (Yakub et al. 2005). Two studies have identified associations 

between the clinical severity of WNV infection and HLA Class I and II alleles (Lanteri et al. 2011; Sarri 

et al. 2016). 

Dengue virus 

Classification of Dengue cases 

DENV, which is the most common mosquito borne viral infection, is spreading worldwide. There is one 

dengue vaccine licensed. The strategic Advisory Group of Experts on Immunisation (SAGE) 

recommended limited usage of the vaccine in only seropositive individuals since April 2018 

(http://www.who.int/immunization/diseases/dengue/revised_SAGE_recommendations_dengue_vac

cines_apr2018/en/). There are four serotypes of DENV co-circulating (DENV-1 to DENV-4). Infection by 

one of the four can result in a spectrum of clinical outcomes ranging from asymptomatic to inapparent 

infection (patients developed mild disease but not enough to seek medical advice) to undifferentiated 

fever, classical dengue fever (DF) with or without hemorrhage, dengue hemorrhagic fever (DHF) with 

plasma leakage leading to shock (dengue shock syndrome (DSS)) and other organ involvement (such 

as hepatitis, encephalitis). 

There are several difficulties in performing genetic studies of dengue even though there are a high 

number of cases. First, clinical case definition can be based on either WHO 1997 (WHO 1997) or WHO 

2009 criteria (WHO 2009), that define severity of dengue in different ways. The WHO 1997 utilizes well 

defined criteria focused on plasma leakage to differentiate DF, DHF and DSS. The WHO 2009 criteria 

are designed for patient management and rely on more subjective criteria including several signs and 

symptoms of multiple organ involvement, hence complicating our understanding of disease 

pathogenesis. Therefore, most human genetic studies used WHO 1997 criteria, which is specific for 

plasma leakage.  

Secondly, previous infection history and infecting dengue serotypes are the two most important 

confounding factors for genetic studies but are expensive, time consuming and not always possible to 

determine. Most studies, which are designed to distinguish primary from secondary infection and can 

identify the infecting dengue serotype indeed showed interaction of these variables and genetic 

factors (Simon-Loriere et al. 2015; Stephens et al. 2002).  

http://www.who.int/immunization/diseases/dengue/revised_SAGE_recommendations_dengue_vaccines_apr2018/en/)
http://www.who.int/immunization/diseases/dengue/revised_SAGE_recommendations_dengue_vaccines_apr2018/en/)
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Genetic study of Dengue 

There were more human genetics studies of DENV compared to mouse genetic studies, which were 

more focused on candidate genes related to IFN pathways. There are several excellent recent reviews 

on human genetic susceptibility to dengue, including a meta-analysis (Xavier-Carvalho et al. 2017a). 

Associations could be replicated in at least two populations for only one locus and six genes (Xavier-

Carvalho et al. 2017a). The region which was replicated in many populations is the HLA locus on 

chromosome 6 including HLA-A*24 (Loke et al. 2001; Malavige et al. 2011; Nguyen et al. 2008), MHC 

class I polypeptide-related sequence B MICB (rs3132468) (Dang et al. 2014; Khor et al. 2011; Whitehorn 

et al. 2013) and tumor necrosis factor TNF (-308, rs1800629) (Fernandez-Mestre et al. 2004; Fernando 

et al. 2015; Sam et al. 2015; Santos et al. 2017). The other six genes are C-type lectin, CD209 

(rs4804803) (Sakuntabhai et al. 2005; Wang et al. 2011; Xavier-Carvalho et al. 2013), C-type lectin 

domain containing 5A CLEC5A (rs1285933) (Xavier-Carvalho et al. 2017b; Xavier-Carvalho et al. 2013), 

immunoglobulin heavy chain receptor FcgR IIA (Arg131His-rs1801274) (Garcia et al. 2010; Mohsin et 

al. 2015; Noecker et al. 2014), cytokine IL-10 (-1082/-819/-592) (Fernando et al. 2015; Perez et al. 

2010), alpha tryptase 1 TPSAB1 (Velasquez et al. 2015) and phospholipase C epsilon 1 PLCE1 

(rs3765524, and rs3740360) (Dang et al. 2014; Khor et al. 2011; Whitehorn et al. 2013). Among these 

genes, how CLEC5A contributes to pathology has been investigated in a mouse model for DENV (Chen 

et al. 2008). 

Although there was a bias of patient selection among the studies (more studies on DHF/DSS than DF), 

there was evidence that different sets of genes are associated with DF (mild clinical dengue) and/or 

DHF/DSS (severe dengue). While the more severe form of dengue is associated with HLA class I, and 

genes associated with inflammation and immune response (CLEC5A) (Xavier-Carvalho et al. 2017b; 

Xavier-Carvalho et al. 2013), cytokine response (IL-10), NK cell (MICB), mast cell activity (TPSAB1) 

(Velasquez et al. 2015) and lipid metabolism (PLCE1, PLCB4, OSBPL10, RXRA) (Sierra et al. 2017), DF is 

associated with genes in xenobiotic pathway (CHST10, AHRR, PPP2R5E and GRIP1) (Oliveira et al. 2018) 

and HLA class II (LaFleur et al. 2002; Sierra et al. 2007; Stephens et al. 2002; Weiskopf et al. 2015). 

Genes involved in viral entry (CD209, FcgRII) and TNF pathway were associated with both forms of 

diseases. In addition, a non-synonymous variant of OAS3 was associated with severe dengue caused 

by DENV serotype 2 (Simon-Loriere et al. 2015). Adaptive immunity could play a more important role 

in eliminating the virus and in the development of clinical and severe dengue disease. More human 

genetic studies with well-characterized patients are needed in order to understand protection and 

pathogenesis of mild clinical and severe dengue in humans. 

Protective and enhancing HLA class I and class II alleles in dengue virus infections 

An association between HLA class I alleles and DHF susceptibility was shown in a large cohort of 

Vietnamese patients. More specifically, it was found that children with HLA-A*33 were less likely to 

develop DHF, whereas children with HLA-A*24 were at increased risk of developing DHF (Loke et al. 

2001). Analyses of NS3- and NS5-specific CD8 T cell responses in different donors suggest opposing 

roles for T cells in both protection and development of DHF. Likewise, a more recent study in Vietnam 

confirmed the HLA association between HLA-A*24 and DHF or DSS and showed that HLA-A*24 with 

histidine at codon 70 is a susceptible allele, whereas the HLA-DRB1*0901 class II allele is protective 

against development of DSS, in patients with DENV-2 infection (Nguyen et al. 2008).  

A second and larger case-control study in ethnic Thai patients revealed a variety of HLA class I 

association with the severity of clinical disease during secondary DENV infections (Stephens et al. 

2002). The HLA-A*0203 allele was in particular associated with less severe DF, regardless of the 

secondary infecting virus serotype. By contrast, HLA-A*0207 was associated with susceptibility to the 
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more severe DHF in patients with secondary DENV-1 and DENV-2 infections. Conversely, HLA-B*51 was 

associated with the development of DHF in patients with secondary infections, and HLA-B*52 was 

associated with DF in patients with secondary DENV-1 and DENV-2 infections. Moreover, HLA-B44, 

B62, B76 and B77 also appeared to be protective against developing clinical disease after secondary 

dengue virus infection. Interestingly, at least for the HLA-A*02 class I alleles, the strong binding 

potential to viral peptides was suggested to enable T cell activation and protection observed in these 

patients with secondary DENV infections.  

Another study of HLA polymorphism in the Cuban population revealed an increased frequency of HLA-

A*31 and -B*15 class I alleles in symptomatic dengue virus infection compared with controls, and 

conversely, an elevated frequency of HLA-DRB1*07 and DRB1*04 class II alleles in control subjects 

compared with dengue case patients (Sierra et al. 2007). In a Mexican population, HLA-B*35 was 

negatively associated with symptomatic disease, whereas HLA-DQB1*0302 was positively associated 

with DHF, and HLA-DQB1*0202 was positively associated with DF only (Falcon-Lezama et al. 2009). 

Finally, in a Sri Lankan population, it was found that HLA-A*31 and HLA-DRB1*08 were associated with 

susceptibility to DSS, during secondary infection, and HLA-A*24 and HLA-DRB1*12 were strongly 

associated with DHF during primary dengue infection (Malavige et al. 2011).  

One of the reasons for the association observed between certain HLA alleles and dengue disease 

severity is linked to the ability of these class I or class II alleles to induce a strong CD8+ or CD4+ T cell 

response against dengue epitopes. In that respect, it was found that T cell responses that were weak 

in magnitude, for example those observed against dengue epitopes restricted by HLA-A*0101 and 

HLA-A*2401, correlated with disease susceptibility, whereas strong and polyfunctional CD8+ T cell 

responses were observed in HLA-B*3501 individuals and were negatively associated with 

symptomatic disease (Weiskopf et al. 2013). Likewise, a higher resistance and susceptibility to severe 

dengue clinical outcome were shown to be associated with a more vigorous CD4+ T cell response in 

the context of DRB1*0401 and DRB1*0802, respectively (Weiskopf et al. 2015).  

Protective or enhancing Killer immunoglobulin-like receptors (KIRs) in DENV infection 

An association between KIR-ligands pairs and susceptibility to dengue in Southern Brazil was also 

detected, in the context of DENV3 infection (Beltrame et al. 2013). Although the exact role of NK cells 

expressing either activating or inhibitory KIRs has yet to be determined during DENV infection in 

humans, several studies strongly support the ability of DENV- or Flavivirus-derived conserved 

peptides, to stimulate or to inhibit KIR2DS2 or RIR3DL1 NK cells in vitro against NS1 or NS3 peptides, 

and in the context of HLA-C*0102 or HLA-B*57, respectively (Naiyer et al. 2017; Townsley et al. 

2016). 

The HLA transgenic mice as models to study the immune protection against DENV 

infection 

To allow the identification of HLA-restricted peptides derived from the viral proteins, several HLA class 

I and class II transgenic mice have been developed to study the T cell response against the whole virus 

or the peptides derived from the viral proteins (Boucherma et al. 2013; Pascolo et al. 1997). Strikingly, 

most DENV-derived T cell epitopes inducing a T cell response in HLA class I mice correspond to the 

peptides identified from human individuals after DENV infection (Duan et al. 2015; Elong Ngono et al. 

2017; Rivino et al. 2013a; Rivino et al. 2013b; Weiskopf et al. 2013; Weiskopf et al. 2011). Importantly, 

as the magnitude of the T cell response reflects the binding affinity of the different peptides to an HLA 

allele, analysis of the magnitude of T cell response in these transgenic mice against the different 

peptides covering the whole sequence should allow the identification of the most immunogenic 

peptides inducing a long lasting immunity. 
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An improvement of this mouse model involves a transient blockade of type I interferon signaling, after 

treatment with anti-IFNAR antibody. Commonly used in wild type mice to study the cellular effectors 

of the immune response to different viruses, such as the WNV or ZIKV (Lazear et al. 2016; Ng et al. 

2015; Pinto et al. 2011; Sheehan et al. 2015; Zhao et al. 2016), this procedure is currently adapted to 

the HLA transgenic mice, with the objective to study the role of peptide-specific T cells in the induction 

of long lasting immunity against DENV and ZIKV infection.  

Perspectives 

A number of studies on flaviviruses have focused on the influence of viral virulence factors on viral 

multiplication, on the inhibition of immune responses of the infected host, and on disease severity. By 

contrast, the role of host genetic determinants on clinical severity of flavivirus infections remains 

elusive, with the notable exception of type I IFN responses. The few examples of genes identified which 

are not directly related to the type I IFN responses demonstrate that genome-wide, unbiased 

approaches will be essential in identifying novel actors. Despite differences in host-virus interactions, 

the mouse can successfully serve as an experimental model to assess the role of specific genes and to 

query the genome for host genetic determinants in genetic reference populations with vast genetic 

polymorphism, such as the Collaborative Cross (Aylor et al. 2011) and the Diversity Outbred mice (Recla 

et al. 2014). Their IFN response could be abrogated by antibodies directed against the type I IFN 

receptor (Lazear et al. 2016). These resources will be highly valuable to address the complex host-virus 

interactions through systems biology approaches. 

Along with these innovative mouse model, well-characterized human cohorts of flaviviral infections 

should be collected. More DENV cohorts with well-characterized virological, immunological and clinical 

parameters from different countries are needed to understand human genetic basis of susceptibility 

to severe dengue, host-viral interaction and genetic susceptibility to ADE phenomenon. In addition, 

cohorts of asymptomatic DENV infected patients will help us understand protective immunity and will 

serve as the best control for symptomatic and severe dengue. Beyond DENV and WNV, ZIKV infection 

represents an ongoing public health challenge because of its complications. Collecting a sufficient 

number of samples from ZIKV-infected donors living in different endemic regions is a necessary step 

forward to be able to identify host genetic factors influencing persistent infection, susceptibility to 

neurological complications, mother-to-child transmission, and susceptibility to brain pathology. 
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Figure legends 

Figure 1 : Innate immune response triggered by flavivirus infection, highlighting mouse genes 

involved in susceptibility or resistance. 

Following infection by a flavivirus, viral RNA is detected by TLRs and RLRs which induce activation of 

several transcription factors such as NF-κB and IRFs which, in turn, promote the transcription of type 

I, type II and type III IFNs. Once secreted, each IFN subtype (α/β, γ, λ) binds to its specific receptor 

(IFNAR, IFNGR, IFNLR) which leads to the activation of the JAK/STAT transduction pathways. IFNAR and 

IFNLR both signal through STAT1, STAT2 and IRF9 whereas only STAT1 is activated by IFNGR. STAT 

proteins activate the transcription of hundreds of ISGs, including Oas genes, some of which sense viral 
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dsRNA and further promote viral ssRNA cleavage by activating RNase L. Genes of the IFN signaling 

pathway identified in the mouse as host genetic factors of susceptibility to flaviviral infections are 

depicted in red. 

Abbreviations: TLR, Toll-like receptor; RLR, RIG-I-like receptor; IFN, interferon; IRF, IFN regulatory 

factor; ISG, IFN stimulated gene; ssRNA, single-stranded RNA; dsRNA, double-stranded RNA. 
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Gene (synonym) WNV DENV ZIKV YFV JEV 

Atg16l1   X   

Ccr2 X X    

Ccr4  X    

Ccr7 X     

Clec5a  X    

Cxcl10 X X    

Cxcr3 X X    

Ddx58 (RIG-I) X     

Dhx58 (LGP2) X     

Ifih1 (MDA5) X     

Ifi27l2a X     

Ifit2 X     

Ifitm3 X     

Ifna X     

Ifnb X     

Ifng X     

Ifnar1 X X X X  

Ifngr1 X X X X  

Ifnlr1 X  X X  

Il10 X     

Il12a X     

Il12b X     

Il23a X     

Irf1 X X    

Irf3 X X X   

Irf5 X X X   

Irf7 X X X   

Isg15   X   

Mavs (IPS-1) X     

Mb21d1 (cGas)  X    

Myd88 X     

Oas1b X     

Rag1  X X   

Rag2  X    

Rnasel X     

Rsad2 X     

Sema7a X     

Stat1 X X X X  

Stat2  X X   

Tlr3 X     

Tlr7 X     

Tnfrsf9     X 

 

 

Table 1 : List of mouse genes which have been shown to affect clinical outcome and/or 

mortality following infection with WNV, DENV, ZIKV, YFV and JEV. Details of supporting 

studies are given in Table 2. 
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Gene 
symbol 
(synonym) 

Function / pathway Virus Mouse strains / cell 
type 

Experimental conditions Phenotype, observations References 

Genes identified by forward genetics approaches 

Oas1b Activation of RNA decay pathway 
by dsRNA recognition 

WNV Susceptible BALB/cByJ, 
C57BL/6J vs resistant 
MAI/Pas and MBT/Pas, 
backcrosses and 
congenic strains 

WNV strain IS-98-ST1, 1000 
ffu ip, 6-wk-old mice 

Most laboratory inbred mouse strains carry a 
non-sense, loss of function mutation making 
them highly susceptible. 

Mashimo et al. 

2002 

    WNV MEFs from susceptible 
C3H/He and resistant 
C3H.PRI-Flvr congenic 
strain 

WNV strain Eg101. 
In vitro infection of MEFs 
transfected with cDNAs of 
candidate genes 

C3H.PRI-Flvr congenic strain carries a non-
sense mutation resulting in higher viral 
replication in MEFs. 

Perelygin et al. 

2002 

  WNV Collaborative Cross (CC) 
and F1 crosses of CC 
mice 

WNV strain TX-2002-HC, 
102 pfu footpad, 8-10-wk-
old mice 

Oas1b plays a role in susceptibility to WNV but 
a wide range of WNV-associated phenotypes 
are observed for a given Oas1b allele. 

Graham et al. 

2015 

Stat1 Promotes transcription of ISG and 
IFN subtypes 

WNV Backcross between 
C57BL/6-MHCII-Aα/β-/- 
and C3H 

WNV strain Kunjin, 103 pfu 
footpad, 8-wk-old mice 

Highly susceptible MHCII-Aα/β-/- mice have 
acquired a spontaneous amino-acid 
substitution mutation. 

Larena et al. 

2017 

Genes identified by their function in host immune responses 

Ccr2 Chemokine receptor expressed on 
Ly6chi inflammatory monocytes 
and other leukocyte subtypes 

WNV C57BL/6J WT and Ccr2 
KO 

WNV strain NY99-35262, 
100 pfu sc, 8-12-wk-old 
mice 

Increased mortality, large and selective 
reduction of Ly6chi monocyte accumulation in 
the brain, sustained monocytopenia. 

Lim et al. 2011 

Ccr7 Chemokine receptor expressed by 
numerous cell types, which 
regulates the homing of T cells 
into lymphoid organs 

WNV C57BL/6J WT and Ccr7 
KO 

WNV strain NY99, 104 pfu 
footpad, 8-12-wk-old mice 

Increased mortality and CNS viral loads, 
leukocyte accumulation in the CNS with 
neuroinflammation and reduced viral 
clearance. 

Bardina et al. 

2017 

Cxcl10 Chemokine of the CXC subfamily 
which binds to CXCR3 receptor 

WNV C57BL/6J WT and Cxcl10 
KO 

WNV strain NY99, 104 pfu 
footpad, 5-9-wk-old mice 

Enhanced morbidity and mortality, increased 
viral burden in the brain, decreased CXCR3+ 
CD8+ T-cell trafficking 

Klein et al. 2005 
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Cxcr3 Receptor for chemokines CXCL9, 
CXCL10 and CXCL11 which 
stimulates leukocyte trafficking 

WNV C57BL/6J WT and Cxcr3 
KO 

WNV strain 3000.0259, 102 
pfu footpad, 5-8-wk-old 
mice 

Enhanced mortality with increased viral burden 
and reduced CD8+ T cell trafficking specifically 
in the cerebellum. 

Zhang et al. 

2008 

Ddx58 (RIG-
I) 

Cytoplasmic sensor of viral ssRNA 
and dsRNA 

WNV WT and Ddx58 KO 
(mixed genetic 
background) 

WNV isolate TX 2002-HC, 
100 pfu footpad, 6-12-wk-
old mice 

Increased mortality. Decreased innate immune 
signaling and virus control in MEFs. Ddx58-Ifih1 
double KO are extremely susceptible. 

Errett et al. 

2013 

Dhx58 
(LGP2) 

Cytoplasmic sensor of viral RNA 
and inhibitor of antiviral RNAi by 
association with Dicer 

WNV C57BL/6J WT and Dhx58 
KO 

WNV isolate TX 2002-HC, 
100 pfu footpad, 6-12-wk-
old mice 

Increased mortality despite activation of innate 
immune response. LGP2 regulates CD8+ T cell 
survival and effector functions. 

Suthar et al. 

2012 

Ifih1 
(MDA5) 

Cytoplasmic sensor of viral dsRNA WNV C57BL/6J WT and Ifih1 
KO 

WNV isolate TX 2002-HC, 
100 pfu footpad, 6-12-wk-
old mice 

Increased mortality. Decreased innate immune 
signaling and virus control in MEFs. Ddx58-Ifih1 
double KO are extremely susceptible. 

Errett et al. 

2013 

   C57BL/6J WT and Ifih1 
KO 

WNV strain 3000.0259, 102-
104 pfu footpad, 9-12-wk-
old mice 

Reduced survival. Increased viral burden 
primarily in the CNS. 

Lazear et al. 

2013 

Ifi27l2a ISG expressed at higher levels in 
granule cell neurons than in 
cortical neurons 

WNV C57BL/6J WT and 
Ifi27l2a KO 

WNV strain 3000.0259, 100 
pfu footpad, 8-12-wk-old 
mice 

Increased susceptibility. Viral burden higher 
only in the CNS, associated with reduced cell 
death. 

Lucas et al. 

2016 

Ifit2 Aka ISG54, member of the IFN-
induced proteins with 
tetratricopeptide repeats 

WNV C57BL/6J WT and Ifit2 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
10-wk-old mice 

Increased susceptibility with higher replication 
in the brain. 

Cho et al. 2013 

Ifitm3 ISG inhibiting virus entry and 
preventing viral fusion and 
release of viral contents into the 
cytosol 

WNV C57BL/6J WT and Ifitm3 
KO 

WNV NY1999, 100 pfu sc, 
8-9-wk-old mice 

Increased susceptibility with higher viral 
burden in peripheral organs and CNS. 
Decreased B-cells, CD4+ T cells and Ag-specific 
CD8+ T cells. 

Gorman et al. 

2016 

Ifna Interferon- (type I) with multiple 
members 

WNV C57BL/6J treated with 

anti-IFN- mAb  

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
12-wk-old mice 

Increased lethality when mAb injected one day 
prior and two days following WNV infection. 

Sheehan et al. 

2015 

Ifnb Interferon- (type I) WNV C57BL/6J WT and Ifnb 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
12-wk-old mice 

Increased mortality with enhanced viral 
replication in peripheral tissues and the CNS. 

Lazear et al. 

2011 

Ifng Interferon- (type II) WNV C57BL/6J WT and Ifng 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
12-wk-old mice 

Increased mortality with enhanced viremia and 
viral replication in lymphoid tissues, earlier 
detection of WNV the CNS. 

Shrestha et al. 

2006 
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Ifnar1 Receptor of type I ( and ) 
interferons 

WNV C57BL/6J WT and Ifnar1 
KO 
129Sv/Ev WT and Ifnar1 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
10-wk-old mice 

High susceptibility with death in 4 days and 
increased infection in macrophages, B cells, 
and T cells in the spleen. 

Samuel and 

Diamond 2005 

Ifngr1 Receptor of type II () interferon WNV C57BL/6J WT and Ifng 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
12-wk-old mice 

Increased mortality with enhanced viremia and 
viral replication in lymphoid tissues, earlier 
detection of WNV the CNS. 

Shrestha et al. 

2006 

Ifnlr1 Receptor of type III () interferon WNV C57BL/6J WT and Ifnlr1 
KO 

WNV strain 3000.0259, 100 
pfu footpad, 5-12-wk-old 
mice 

Increased viral load in the brain due to 
enhanced blood-brain barrier permeability. 

Lazear et al. 

2015 

Il10 Pleiotropic cytokine with 
immunosuppressive properties 

WNV C57BL/6J WT and Il10 
KO 

WNV strain 2741, 2000 pfu 
ip, 7-8wk-old mice 

Markedly reduced infection with increased 
production of antiviral cytokines. 

Bai et al. 2009 

Il12a p35 subunit of IL12 which 
activates NK cells and induces 
differentiation of CD4+ T-cells into 

IFN- producing Th1 cells. 

WNV C57BL/6J WT and Il12a 
KO 

WNV strain 2741, 2000 pfu 
ip, 8-12wk-old mice 

No difference in susceptibility with wildtype 
controls. 

Town et al. 

2009 

Il12b p40 subunit of IL12 WNV C57BL/6J WT and Il12b 
KO 

WNV strain 2741, 2000 pfu 
ip, 8-12wk-old mice 

Increased mortality. Town et al. 

2009 

Il23a Associates with IL12B to form 
IL23, which can activate STAT4 
and stimulate the production of 

IFN- 

WNV C57BL/6J WT and Il23a 
KO 

WNV strain 2741, 2000 pfu 
ip, 8-12wk-old mice 

Increased mortality. Town et al. 

2009 

Irf1 Transcriptional regulator of 
interferon stimulated genes 

WNV C57BL/6J WT and Irf1 KO WNV strain 3000.0259, 100 
pfu footpad, 8-12-wk-old 
mice 

Increased mortality, elevated viral burdens in 
peripheral tissues and the CNS. 

Brien et al. 2011 

Irf3 Transcriptional regulator of 
interferon stimulated genes 

WNV C57BL/6J WT and Irf3 KO WNV strain 3000.0259, 100 
pfu footpad, 8-12-wk-old 
mice 

Increased mortality, elevated viral burdens in 
peripheral tissues and the CNS. 

Daffis et al. 

2007 

Irf5 Transcriptional regulator of 
interferon stimulated genes 

WNV C57BL/6J WT and Irf5 KO WNV strain 3000.0259, 100 
pfu footpad, 9-10-wk-old 
mice 

Increased lethality with elevated infection in 
peripheral organs and the CNS. 

Thackray et al. 

2014 

Irf7 Transcriptional regulator of 
interferon stimulated genes 

WNV C57BL/6J WT and Irf7 KO WNV strain 3000.0259, 100 
pfu footpad, 8-12-wk-old 
mice 

Increased lethality with blunted systemic type I 
IFN response. Increased viral titers in primary 
macrophages, fibroblasts, dendritic cells, and 
cortical neurons. 

Daffis et al. 

2008b 

Mavs (IPS-
1) 

Adaptor molecule of RIG-I and 
MDA5 

WNV C57BL/6J WT and Mavs 
KO 

WNV isolate TX 2002-HC, 
100 pfu footpad, 6-12-wk-
old mice 

High susceptibility in 8 days with enhanced 
viral replication and dissemination (similar to 
Ddx58-Ifih1 double KO). 

Suthar et al. 

2010 

Errett et al. 

2013 
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Mb21d1 
(cGas) 

Cytosolic DNA sensor, cGMP-AMP 
synthase, activator of Tmem173 
(STING) 

WNV C57BL/6J WT and 
Mb21d1 KO 

WNV NY1999, 100 pfu sc, 
8-9-wk-old mice 

Increased mortality but no increase in brain 
viral load 

Schoggins et al. 

2014 

Myd88 Adaptor molecule of TLR7 WNV C57BL/6J WT and 
Myd88 KO 
 

WNV strain 2741, 2000 pfu 
ip, 8-12wk-old mice 

Increased mortality. Increased viral burden 
systemically and in the CNS. 

Town et al. 

2009 

   C57BL/6J WT and 
Myd88 KO 

WNV strain 3000.0259, 100 
pfu footpad, 8-10-wk-old 
mice 

Increased mortality. Increased viral burden 
primarily in the CNS. 

Szretter et al. 

2010 

Rnasel Ribonuclease L (2',5'-OAS-
dependent) 

WNV C57BL/6J WT and Rnasel 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
10-wk-old mice 

Increased mortality (even higher if combined 
with Eif2ak2 (PKR) knockout). Increased viral 
burden in tissues and CNS. 

Samuel et al. 

2006 

Rsad2 Aka viperin : ISG expressed in 
response to type I and II 
interferons. Modulates 
cholesterol and isoprenoid 
biosynthesis, and lipid raft 
formation. 

WNV C57BL/6J WT and Rsad2 
KO 

WNV strain 3000.0259, 100 
pfu footpad or 10 pfu ic, 8-
10-wk-old mice 

Increased lethality. Modest increase of viral 
replication in macrophages. No difference in 
cortical neurons. 

Szretter et al. 

2011 

Sema7a A membrane-associated/secreted 
protein involved in connecting the 
neuronal and immune systems. 

WNV C57BL/6J WT and 
Sema7a KO 

WNV strain 2741, 1000 pfu 
ip, 6-8wk-old mice 

Increased survival, reduced viral burden and 
blood–brain barrier permeability. 

Sultana et al. 

2012 

Tlr3 Recognition of dsRNA WNV C57BL/6J WT and Tlr3 
KO 

WNV strain 2741, 1000 pfu 
ip, 6-10-wk-old mice 
 
WNV strain 3000.0259, 100 
pfu footpad, 8-12-wk-old 
mice 

Reduced mortality, reduced viral load, 
inflammatory responses and neuropathology in 
the brain. 
Increased mortality with higher viral burden in 
the CNS. 

Wang et al. 

2004 

 

Daffis et al. 

2008a 

Tlr7 Recognition of ssRNA WNV C57BL/6J WT and Tlr7 
KO 

WNV strain 2741, 2000 pfu 
ip, 8-12wk-old mice 

Increased mortality. Increased viral burden 
systemically and in the CNS. 

Town et al. 

2009 

            
 

Ccr2 Chemokine receptor expressed on 
Ly6chi inflammatory monocytes 
and other leukocyte subtypes 

DENV C57BL/6J WT and Ccr2 
KO 

Mouse-adapted DENV-2 
strain P23085, 20 pfu ip, 8-
10-wk-old male mice 

Enhanced survival associated with decreased 
liver damage, decreased cell activation and 
decreased cytokine storm. 

Guabiraba et al. 

2010 

Ccr4 Chemokine receptor which 
regulates leukocytes trafficking 

DENV C57BL/6J WT and Ccr4 
KO 

Mouse-adapted DENV-2 
strain P23085, 20 pfu ip, 8-
10-wk-old male mice 

Enhanced survival associated with decreased 
hemoconcentration, thrombocytopenia, liver 
damage, systemic inflammation and leukocyte 
activation. 

Guabiraba et al. 

2010 
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Clec5a C-type lectin which regulates cell 
adhesion, cell-cell signaling during 
immune response 

DENV Stat1 KO (unspecified 
genetic background) 
treated with anti-
CLEC5A mAb  

Mouse-adapted DENV-2 
strain New Guinea C-N, 105 
pfu ip and ic 
simultaneously, unspecified 
mouse age 

Decreased plasma leakage and TNF-α serum 
level without suppression of viral replication 
and overall reduced lethality. 

Chen et al. 2008 

Cxcl10 Chemokine of the CXC subfamily 
which binds to CXCR3 receptor 

DENV C57BL/6J WT and Cxcl10 
KO (unspecified genetic 
background) 

Mouse-adapted DENV-2 
strain New Guinea C-N, 
2.105 pfu ic, 6-8-wk-old 
mice 

Increased mortality rate but unchanged 
number of infiltrating T cells in the brain. 
Cxcl10 KO mice tend to be more susceptible 
than Cxcr3 KO mice. 

Hsieh et al. 

2006 

Ip and Liao 2010 

Cxcr3 Receptor for chemokines CXCL9, 
CXCL10 and CXCL11 which 
stimulates leukocyte trafficking 

DENV C57BL/6J WT and Cxcr3 
KO (unspecified genetic 
background) 

Mouse-adapted DENV-2 
strain New Guinea C-N, 
2.105 pfu ic, 6-8-wk-old 
mice 

Increased mortality rate with high viral load 
associated with a decrease in CD8+ T cells in 
the brain. 

Hsieh et al. 

2006 

Ifnar1 Receptor of type I ( and ) IFNs DENV C57BL/6J WT and Ifnar1 
KO 

Mouse-adapted DENV-2 
strain D220 or DENV-2 
strain D2S10, 105-6-7 pfu iv, 
6-8-wk-old mice 

Susceptible to both viral strains with 100% 
morbidity. Mortality rate varies between 15% 
and 100% according to the viral strain and 
dose. Viral replication is observed in blood, 
liver and blood marrow. Increased serum levels 
of TNF-α and IL-10. 

Shresta et al. 

2004 

Orozco et al. 

2012 

   129Sv/Ev WT and Ifnar1 
KO (also called A129 
mice) 

DENV-2 S221 strain, 1011-12 
genomic equivalents (GE) 
iv, 5-6-wk-old mice 

100% morbidity with observation of systemic 
disease but no sign of limb paralysis. Mortality 
rate varies between 0% and 100% according to 
the inoculum dose. Viral replication is observed 
in blood, spleen and blood marrow. 

Prestwood et al. 

2012 

Ifnar1 / 
Ifngr1 

Receptors of type I ( and ) and 

type II () IFNs 

DENV 129Sv/Ev WT and Ifnar1-
Ifngr1 double KO (also 
called AG129 mice) 

DENV-2 strain PL046, 105-6-

7-8 pfu iv or mouse adapted 
DENV-1 strain Mochizuki, 
4.104 pfu iv, 5-6-wk-old 
mice 

Highly susceptible to both viral strains.  
Mortality rate varies between 0 and 100% 
depending on DENV-2 infectious dose. Clinical 
signs include limb paralysis. Viral replication is 
observed in blood, spleen, lymph nodes and 
CNS. 

Shresta et al. 

2004 

Prestwood et al. 

2012 

Irf1 / Irf3 / 
Irf5 / Irf7 

Transcriptional regulators of IFN 
stimulated genes 

DENV C57BL/6J WT and Irf3-
Irf5-Irf7 triple KO (TKO) 
C57BL/6J WT and Irf1-
Irf3-Irf5-Irf7 quadruple 
KO (QKO) 

DENV-2 S221 strain, 5.106 
ffu iv, under ADE 
conditions, 5-6-wk-old 
male and female mice 

Both TKO and QKO mice sustain viral 
replication but only QKO mice succumb to 
infection. DENV infection of TKO mice results in 
minimal type I IFN production but a robust 
type II IFN response. 

Carlin et al. 

2017 

Rag1 Protein involved in activation of 
immunoglobulin V(D)J 
recombination during B and T cell 
development 

DENV C57BL/6J WT and Rag1 
KO 
(deficient in B and T 
lymphocytes) 

DENV-2 strain PL046, 105-6-

7-8 pfu iv or mouse adapted 
DENV-1 strain Mochizuki, 
4.104 pfu iv, 5-6-wk-old 
mice 

Increased mortality rate with mouse-adapted 
DENV-1 strain but no detection of viral 
replication in peripheral organs. 

Shresta et al. 

2004 
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Rag2 Protein involved in the initiation 
of V(D)J recombination during B 
and T cell development 

DENV 129Sv/Ev WT and Rag2 
KO (deficient in B and T 
lymphocytes) 

DENV-2 strain PL046, 105-6-

7-8 pfu iv or mouse adapted 
DENV-1 strain Mochizuki, 
4.104 pfu iv, 5-6-wk-old 
mice 

Increased mortality rate with mouse-adapted 
DENV-1 strain but no detection of viral 
replication in peripheral organs. 

Shresta et al. 

2004 

Stat1 Promotes transcription of ISG and 
IFN subtypes 

DENV 129Sv/Ev WT and Stat1 
KO 

DENV-2 strain PL046, 107-8 

pfu iv or mouse adapted 
DENV-1 strain Mochizuki, 
4.104 pfu iv, 5-6-wk-old 
mice 

Increased mortality rate with both DENV 
strains but viral replication is only transient 
(DENV is undetected at day 3 p.i. in various 
tissues). 

Shresta et al. 

2005 

Perry et al. 2011 

Stat2 Promotes transcription of ISG and 
IFN subtypes 

DENV C57BL/6J WT and Stat2 
KO 

Mouse adapted DENV-2 
D2S10 strain, 106 ffu iv, 
under ADE conditions, 
unspecified mouse age 

Extended viral detection in spleen and lymph 
nodes but no mortality. 

Perry et al. 2011 

Stat1 / 
Stat2 

Promotes transcription of ISG and 
IFN subtypes 

DENV 129Sv/Ev WT and Stat1-
Stat2 double KO 

DENV-2 S221 strain, 2.105 
pfu iv, 5-6-wk-old mice 

Highly susceptible, 100% morbidity and 
lethality contrary to single-deficient mice. 

Perry et al. 2011 

            
 

Atg16l1 Part of a protein complex 
necessary for autophagy 

ZIKV C57BL/6J WT and 
Atg16l1Hm 

(hypomorphic) treated 
with anti-IFNAR mAb  

ZIKV strain Paraiba 2015 
(Asian), 103 ffu sc, 8-10-wk-
old pregnant female mice 

Restricted ZIKV vertical transmission and 
placental/fetal damage. Overall improved 
placental and fetal outcomes. 

Cao et al. 2017 

Ifnar1 Receptor of type I ( and ) IFNs ZIKV C57BL/6J WT and Ifnar1 
KO 

Several ZIKV strains 
(African and Asian), 103 ffu 
sc, 5-6-wk-old male mice 
ZIKV strain MR766 (African) 
or PF13 (Asian), 102 ffu sc, 
5-6-wk-old male mice 

Highly susceptible to the African strains, 100% 
morbidity and lethality. Depending on the 
Asian strains, mortality rate varies between 0 
and 100%. Viral replication is observed in all 
cases in blood, brain, spleen, liver and testis. 

Lazear et al. 

2016 

Tripathi et al. 

2017 

Other results 

reviewed in 

Winkler and 

Peterson 2017 

   129Sv/Ev WT and Ifnar1 
KO (also called A129 
mice) 

ZIKV strain MP1751 
(African) or PRVABC59 
(Asian), 10 or 106 ffu sc, 6-
8-wk-old male mice 
ZIKV strain FSS13025 
(Asian), 105 ffu ip, 3-5-11-
wk-old mice 

Highly susceptible to the African strain, 100% 
morbidity and lethality. Viral dissemination to 
the brain, spleen, liver and testis. 
Susceptibility to Asian strain is age-dependent, 
only mice under 6 weeks of age display 
morbidity and lethality. Viral replication is 
observed in all cases in blood, brain, spleen, 
liver and testis. 

Dowall et al. 

2017 

Rossi et al. 2016 
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Ifnar1 / 
Ifngr1 

Receptors of type I  ( and ) and 

type II () IFNs 

ZIKV 129Sv/Ev WT and Ifnar1-
Ifngr1 double KO (also 
called AG129 mice) 

ZIKV strain PF13 (Asian), 
105 pfu sc, 3-4-8-wk-old 
mice 

Highly susceptible regardless of mouse age or 
infectious dose. 100% morbidity and mortality. 
Viral replication is observed in blood and 
organs including spleen, liver and CNS but is 
associated with severe pathological findings 
only in the brain and muscle. 

Aliota et al. 

2016 

Other results 

reviewed in 

Winkler and 

Peterson 2017 

Ifnlr1 Receptor of type III () interferon ZIKV C57BL/6J WT and Ifnlr1 
KO 

ZIKV strain Paraiba 2015 
(Asian), 103 pfu footpad 

Increased ZIKV replication in the placenta and 
fetus 

Jagger et al. 

2017 

Irf3 / Irf5 / 
Irf7 

Transcriptional regulators of IFN 
stimulated genes 

ZIKV C57BL/6J WT and Irf3-
Irf5-Irf7 triple KO (TKO) 

ZIKV strain MR766 (African) 
or PF13 (Asian), 102 ffu sc, 
5-6-wk-old mice 

Highly susceptible to both ZIKV strains, 100% 
morbidity and lethality. 

Lazear et al. 

2016 

Isg15 Ubiquitin-like protein activated by 
type I IFNs 

ZIKV C57BL/6J WT and Isg15 
KO 

ZIKV strain PRVABC59 
(Asian), 104 pfu 
intravitreally in the right 
eye, 4-6-wk-old male and 
female mice 

Severe chorioretinitis associated with 
increased retinal cell death and higher ZIKV 
RNA and protein levels. 

Singh et al. 2017 

Rag1 Protein involved in activation of 
immunoglobulin V(D)J 
recombination during B and T cell 
development 

ZIKV C57BL/6J WT and Rag1 
KO 
(deficient in B and T 
lymphocytes) treated 
with anti-IFNAR mAb  

Mouse-adapted ZIKV strain 
Dakar 41519 (African), 106 
ffu sc, 7-wk-old male mice 
ZIKV strain Paraiba (Asian), 
104 pfu ip, 8-10-wk-old 
male mice 

ZIKV replication is observed in male 
reproductive organs. 
Enhanced morbidity with signs of severe 
disease. Viral replication is observed at high 
level in the brain and testes. 

Govero et al. 

2016 

Winkler et al. 

2017 

Stat1 Promotes transcription of ISG and 
IFN subtypes 

ZIKV 129Sv/Ev WT and Stat1 
KO (unspecified genetic 
background) 

ZIKV strain MR766 
(African), 104 pfu sc, 7-8-
wk-old male mice 

Highly susceptible, 100% morbidity and 
lethality. High viral load in the blood and in the 
brain. 

Kamiyama et al. 

2017 

Stat2 Promotes transcription of ISG and 
IFN subtypes 

ZIKV C57BL/6J WT and Stat2 
KO 

ZIKV strain MR766 
(African), 103 ffu sc, 5-6-wk-
old female mice 

Highly susceptible, 100% morbidity with 
neurological symptoms and 100% lethality. 
High viral loads in the CNS, gonads, spleen and 
liver. 

Tripathi et al. 

2017 

            
 

Ifnar1 Receptor of type I ( and ) 
interferons 

YFV 129 and Ifnar1 KO YFV Asibi and Angola 
wildtype strains, 104 pfu 
footpad and YFV 17D-204 
vaccine strain, 106 pfu 
footpad, 3-4wk-old mice 

Highly susceptible to viscerotropic YFV strain 
but subclinical infection with 17D vaccine 
strain. 

Meier et al. 

2009 

   C57BL/6J and Ifnar1 KO YFV 17D vaccine strain, 104 
pfu ip, 3-4wk-old mice 

Viscerotropic disease with mortality by ip but 
not by im, footpad or sc routes. 

Erickson and 

Pfeiffer 2015 
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Ifngr1 Receptor of type III () interferon YFV 129 and Ifngr1 KO YFV Asibi and Angola 
wildtype strains, 104 pfu 
footpad and YFV 17D-204 
vaccine strain, 106 pfu 
footpad, 3-4wk-old mice 

Resistant to YFV wildtype and 17D vaccine 
strains. 

Meier et al. 

2009 

Ifnar1 / 
Ifngr1 

Receptors of type I  ( and ) and 

type II () interferons 

YFV 129 and Ifnar1-Ifngr1 
double KO 

17D-204 vaccine strain, 106 
pfu footpad, 3-4wk-old 
17D-204 vaccine strain, 
2.105 pfu ip, 7-8-wk-old 
mice 

Highly susceptible to 17D-204 vaccine strain. 
Highly susceptible to 17D-204 vaccine strain, 
with neurotropic and viscerotropic infection 
(high viral titers in brain and liver). 

Meier et al. 

2009 

Thibodeaux et 

al. 2012 

Ifnlr1 Receptor of type III () interferon YFV C57BL/6J WT and Ifnlr1 
KO 

17D vaccine strain, 106-7 
pfu iv, 2-6mo-old 

KO resistant to vaccinal strain 17D like Ifnar1/2 
mice, but mice with double Ifnar1/2 and Inflr1 
KO highly susceptible. 

Douam et al. 

2017 

Stat1 Promotes transcription of ISG and 

IFN- subtypes 

YFV 129 and Stat1 KO YFV Asibi and Angola 
wildtype strains, 104 pfu 
footpad and YFV 17D-204 
vaccine strain, 106 pfu 
footpad, 3-4wk-old mice 

Highly susceptible to viscerotropic YFV strain 
but subclinical infection with 17D vaccine 
strain. 

Meier et al. 

2009 

            
 

Tnfrsf9 Aka CD137, T cell costimulatory 
molecule 

JEV C57BL/6 WT and Tnfrsf9 
KO 

JEV Beijing-1 strain, 1.5-
3.105 pfu ip, 4-5wk-old 
mice 

Reduced mortality rate and reduced viral 
burden in extraneural tissues and the CNS. 

Kim et al. 2015 

 

Table 2 : Detailed information on mouse genetic studies supporting the role of specific genes on susceptibility or resistance to flaviviruses. 

 




