J. Agudo, A. Ruzo, K. Kitur, R. Sachidanandam, J. M. Blander et al., A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade, 2012.

, Mol. Ther, vol.20, pp.2257-2267

A. Aiuti, L. Biasco, S. Scaramuzza, F. Ferrua, M. P. Cicalese et al., Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome, Science, vol.341, p.1233151, 2013.

L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature, vol.413, pp.732-738, 2001.

V. Apostolopoulos, I. F. Mckenzie, C. Lees, K. I. Matthaei, Y. et al., A role for IL-5 in the induction of cytotoxic T lymphocytes in vivo, Eur. J. Immunol, vol.30, pp.1733-1739, 2000.

A. S. Beignon, K. Mckenna, M. Skoberne, O. Manches, I. Dasilva et al., Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Tolllike receptor-viral RNA interactions, J. Clin. Invest, vol.115, pp.3265-3275, 2005.

A. S. Beignon, K. Mollier, C. Liard, F. Coutant, S. Munier et al., Lentiviral vector-based prime/boost vaccination against AIDS: pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques, J. Virol, vol.83, pp.10963-10974, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00457819

A. Biffi, E. Montini, L. Lorioli, M. Cesani, F. Fumagalli et al., Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy, Science, vol.341, p.1233158, 2013.

L. Bonifaz, D. Bonnyay, K. Mahnke, M. Rivera, M. C. Nussenzweig et al., Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance, J. Exp. Med, vol.196, pp.1627-1638, 2002.

K. Breckpot, D. Escors, F. Arce, L. Lopes, K. Karwacz et al., HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7, J. Virol, vol.84, pp.5627-5636, 2010.

N. Cartier, S. Hacein-bey-abina, C. C. Bartholomae, G. Veres, M. Schmidt et al., , 2009.

, Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy, Science, vol.326, pp.818-823

M. L. Caton, M. R. Smith-raska, R. , and B. , Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen, J. Exp. Med, vol.204, pp.1653-1664, 2007.

N. Chinnasamy, D. Chinnasamy, J. F. Toso, R. Lapointe, F. Candotti et al., Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors, Hum. Gene Ther, vol.11, pp.1901-1909, 2000.

M. A. Cox, S. M. Kahan, and A. J. Zajac, Anti-viral CD8 T cells and the cytokines that they love, Virology, vol.435, pp.157-169, 2013.

J. Diao, E. Winter, W. Chen, F. Xu, and M. S. Cattral, Antigen transmission by replicating antigen-bearing dendritic cells, J. Immunol, vol.179, pp.2713-2721, 2007.

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, R. Sousa et al., , 2004.

, Innate antiviral responses by means of TLR7-mediated recognition of singlestranded RNA, Science, vol.303, pp.1529-1531

C. Esslinger, P. Romero, and H. R. Macdonald, Efficient transduction of dendritic cells and induction of a T-cell response by third-generation lentivectors, Hum. Gene Ther, vol.13, pp.1091-1100, 2002.

J. H. Fritz, R. L. Ferrero, D. J. Philpott, and S. E. Girardin, Nod-like proteins in immunity, inflammation and disease, Nat. Immunol, vol.7, pp.1250-1257, 2006.
DOI : 10.1038/ni1412

T. B. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat. Rev. Immunol, vol.9, pp.465-479, 2009.
DOI : 10.1038/nri2569

, Cell Reports, vol.26, pp.1242-1257, 20191255-01-29.

J. Gil, J. Alcamí, E. , and M. , Activation of NF-kappa B by the dsRNA-dependent protein kinase, PKR involves the I kappa B kinase complex, Oncogene, vol.19, pp.1369-1378, 2000.

L. Gillim-ross, A. Cara, and M. E. Klotman, HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages, Viral Immunol, vol.18, pp.190-196, 2005.
DOI : 10.1089/vim.2005.18.190

F. Grasso, D. R. Negri, S. Mochi, A. Rossi, A. Cesolini et al., Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein, Int. J. Cancer, vol.132, pp.335-344, 2013.
DOI : 10.1002/ijc.27676

C. G?-urtler and A. G. Bowie, Innate immune detection of microbial nucleic acids, Trends Microbiol, vol.21, pp.413-420, 2013.

S. Hacein-bey-abina, C. Von-kalle, M. Schmidt, M. P. Mccormack, N. Wulffraat et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science, vol.302, pp.415-419, 2003.
DOI : 10.1126/science.1088547

S. Hacein-bey-abina, J. Hauer, A. Lim, C. Picard, G. P. Wang et al., Efficacy of gene therapy for X-linked severe combined immunodeficiency, N. Engl. J. Med, vol.363, pp.355-364, 2010.

Y. He, J. Zhang, Z. Mi, P. Robbins, L. D. Falo et al., Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity, J. Immunol, vol.174, pp.3808-3817, 2005.
DOI : 10.4049/jimmunol.174.6.3808

URL : http://www.jimmunol.org/content/174/6/3808.full.pdf

H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato et al., A Toll-like receptor recognizes bacterial DNA, Nature, vol.408, pp.740-745, 2000.
DOI : 10.1038/35047123

H. Hemmi, T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo et al., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway, Nat. Immunol, vol.3, pp.196-200, 2002.
DOI : 10.1038/ni758

J. Hendriks, Y. Xiao, and J. Borst, CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool, J. Exp. Med, vol.198, pp.1369-1380, 2003.

S. Hervas-stubbs, A. Olivier, F. Boisgerault, N. Thieblemont, and C. Leclerc, TLR3 ligand stimulates fully functional memory CD8+ T cells in the absence of CD4+ T-cell help, Blood, vol.109, pp.5318-5326, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00135749

S. Hervas-stubbs, J. I. Riezu-boj, U. Mancheñ-o, P. Rueda, L. Lopez et al., , 2014.

, J. Immunol, vol.193, pp.1151-1161

K. Hochheiser, M. Klein, C. Gottschalk, F. Hoss, S. Scheu et al., Cutting edge: the RIG-I ligand 3pRNA potently improves CTL cross-priming and facilitates antiviral vaccination, J. Immunol, vol.196, pp.2439-2443, 2016.
DOI : 10.4049/jimmunol.1501958

URL : http://www.jimmunol.org/content/196/6/2439.full.pdf

K. Honda, H. Yanai, H. Negishi, M. Asagiri, M. Sato et al., IRF-7 is the master regulator of type-I interferon-dependent immune responses, Nature, vol.434, pp.772-777, 2005.

V. Hornung, J. Ellegast, S. Kim, K. Brzó-zka, A. Jung et al., 5 0-Triphosphate RNA is the ligand for RIG-I, Science, vol.314, pp.994-997, 2006.
DOI : 10.1126/science.1132505

K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, J. Immunol, vol.162, pp.3749-3752, 1999.

A. Israë-l, The IKK complex, a central regulator of NF-kappaB activation, Cold Spring Harb. Perspect. Biol, vol.2, p.158, 2010.

A. M. Jamieson, A. Diefenbach, C. W. Mcmahon, N. Xiong, J. R. Carlyle et al., The role of the NKG2D immunoreceptor in immune cell activation and natural killing, Immunity, vol.17, pp.19-29, 2002.

S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De-los-santos et al., In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens, Immunity, vol.17, pp.211-220, 2002.

K. Karwacz, S. Mukherjee, L. Apolonia, M. P. Blundell, G. Bouma et al., Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy, J. Virol, vol.83, pp.3094-3103, 2009.
DOI : 10.1128/jvi.02519-08

URL : https://jvi.asm.org/content/83/7/3094.full.pdf

T. Kawai, A. , and S. , The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat. Immunol, vol.11, pp.373-384, 2010.

T. Kawai, O. Adachi, T. Ogawa, K. Takeda, A. et al., Unresponsiveness of MyD88-deficient mice to endotoxin, Immunity, vol.11, pp.115-122, 1999.
DOI : 10.1016/s1074-7613(00)80086-2

URL : https://doi.org/10.1016/s1074-7613(00)80086-2

J. T. Kim, Y. Liu, R. P. Kulkarni, K. K. Lee, B. Dai et al., Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation, Sci. Immunol, vol.2, p.1329, 2017.
DOI : 10.1126/sciimmunol.aal1329

URL : http://immunology.sciencemag.org/content/immunology/2/13/eaal1329.full.pdf

T. Kimura, R. C. Koya, L. Anselmi, C. Sternini, H. J. Wang et al., Lentiviral vectors with CMV or MHCII promoters administered in vivo: immune reactivity versus persistence of expression, Mol. Ther, vol.15, pp.1390-1399, 2007.

M. I. Love, W. Huber, A. , S. ;. M?-uller, U. Steinhoff et al., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.1918-1921, 1994.

Y. Nan, G. Nan, and Y. J. Zhang, Interferon induction by RNA viruses and antagonism by viral pathogens, Viruses, vol.6, pp.4999-5027, 2014.
DOI : 10.3390/v6124999

URL : https://www.mdpi.com/1999-4915/6/12/4999/pdf

S. Nayak and R. W. Herzog, Progress and prospects: immune responses to viral vectors, Gene Ther, vol.17, pp.295-304, 2010.
DOI : 10.1038/gt.2009.148

URL : https://www.nature.com/articles/gt2009148.pdf

D. R. Negri, Z. Michelini, S. Baroncelli, M. Spada, S. Vendetti et al., Successful immunization with a single injection of non-integrating lentiviral vector, Mol. Ther, vol.15, pp.1716-1723, 2007.

P. K. Otto, R. Bitner, S. Huber, and K. Volkerding, Separate isolation of genomic DNA and total RNA from single samples using the SV total RNA isolation system, Promega Notes, vol.69, pp.19-24, 1998.

S. Philippe, C. Sarkis, M. Barkats, H. Mammeri, C. Ladroue et al., Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo, Proc. Natl. Acad. Sci. USA, vol.103, pp.17684-17689, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00166677

A. Pichlmair, O. Schulz, C. P. Tan, T. I. Nä-slund, P. Liljeströ-m et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5 0-phosphates, Science, vol.314, pp.997-1001, 2006.
DOI : 10.1126/science.1132998

A. Pichlmair, S. S. Diebold, S. Gschmeissner, Y. Takeuchi, Y. Ikeda et al., Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9, J. Virol, vol.81, pp.539-547, 2007.
DOI : 10.1128/jvi.01818-06

URL : https://jvi.asm.org/content/81/2/539.full.pdf

A. G. Porter and R. U. Jä-nicke, Emerging roles of caspase-3 in apoptosis, Cell Death Differ, vol.6, pp.99-104, 1999.

L. A. Pozzi, J. W. Maciaszek, R. , and K. L. , Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells, J. Immunol, vol.175, pp.2071-2081, 2005.

H. C. Probst, J. Lagnel, G. Kollias, and M. Van-den-broek, Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance, Immunity, vol.18, pp.713-720, 2003.

M. Rossetti, S. Gregori, E. Hauben, B. D. Brown, L. S. Sergi et al., HIV-1-derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells, Hum. Gene Ther, vol.22, pp.177-188, 2011.

. Hervas-stubbs, The non-pulsed control population was labeled with a low concentration (0.25 mM) of CFSE. CFSE high-and CFSE low-labeled cells were mixed in a 1:1 ratio and injected i.v. into the mice 6 days after the immunization. The number of CFSE-positive cells remaining in the spleen after 19 hours was determined by flow cytometry, and the percentage of specific lysis was calculated as follows: % specific lysis = 100, vivo killing assay Mice were injected i.v. with PBS, 10 6 TUs IDLV-OVA, 100 mg OVA with 25 mg 5 0 ppp-dsRNA and 4 mL in vivo-jetPEI, 2007.

. Schlecht, Ninety-six-well Multiscreen-HA sterile plates (Millipore, Molsheim, France) were coated with purified anti-IFN-g mAbs (Murine IFN-g ELISpot Pair from Diaclone). Plates were washed and blocked with complete culture medium for 2 hours before adding the cells. Various numbers of splenocytes from immunized and control mice were then added (2 to 4 3 10 5 per well) in the presence or absence of 10 mg/mL of OVA 257-264 peptide. The cells were cultured O/N at 37 C. They were then washed and the biotinylated mAbs were added (Murine IFN-g ELISpot Pair from Diaclone) in a solution of PBS 1% BSA. One hour and half later, the plates were washed and streptavidin-alkaline phosphatase (AKP) was added to the wells in a solution of PBS 1% BSA, ELISPOT assay Mice were injected i.v. with PBS, 10 6 TUs IDLV-OVA, 100 mg OVA with 25 mg 5 0 ppp-dsRNA and 4 mL in vivo-jetPEI, 2004.

. Sigma-aldrich, For each mouse, the number of peptide-specific IFN-g-producing cells was determined by calculating the difference between the number of spots generated in the absence and in the presence of the OVA 257-264 peptide

, ) and then by FACS ARIA after labeling with anti-CD11c/eF450 (N418), anti-B220/PE (RA3-6B2), anti-CD317/ APC (eBio927) and anti-CD3e/FITC (17A2) antibodies. The purity was always > 96.3% of live cells. RNA from purified CD11c + cells was extracted from cell lysates with the RNeasy Plus microkit (QIAGEN, Courtaboeuf, France). cDNA was generated using a RT2 First Strand Kit and quantified using the RT2 Profiler Mouse antiviral responses and NF-kB signaling pathway PCR arrays (SABiosciences, QIAGEN, Courtaboeuf, France), according to the manufacturer's instructions. The results were analyzed using the SA Biosciences Data Analysis Web Portal, CD11c + CD3e-B220-CD317-splenic cells from immunized mice were first magnetically sorted with anti-CD11c-Beads

, Genotyping of mice with NEMO-deficient CD11c + cells To generate mice with a conditional depletion of the NF-kB pathway in CD11c + cells, offspring were genotyped using PCR for CD11cCre and for Nemo flox at each generation. DNA was extracted from biopsies of the offspring obtained after crossing CD11c-Cre mice with Nemo flox mice using the DNeasy Blood & Tissue Kit

, Reactions were performed with 2 mL of genomic DNA in a 10 mL total volume containing 1x reaction buffer (Invitrogen, Fisher Scientific distributor, Illkirch, France), 2 mM MgCl2 (Invitrogen), 0.2 mM of each dNTP

, The PCR conditions were as follows: 1 cycle of 3 min at 94 C, followed by 35 cycles of 30 s at 94 C, 1 min at 64 C, 1 min at 72 C with a final extension step of 2 min at 72 C in a CFX96 BioRad Thermocycler. PCR products were analyzed by gel electrophoresis on 2% agarose gels stained with ethidium bromide. The resulting PCR product sizes were 313 bp for the transgene

, mM MgCl2 (Invitrogen), 0.2 mM of each dNTP (Roche, Sigma Aldrich distributor, St Quentin Fallavier, France), 0.2 mM each of the primers and 1 unit of Platinum Taq polymerase (Invitrogen). PCR conditions were: 1 cycle of 2 min at 94 C, followed by 30 cycles of 30 s e5, Cell Reports, vol.2, pp.1242-1257, 2019.